SUPPORTING INFORMATION

Multi-Stimuli Responsive Block Copolymers as

Smart Release Platform for a Polypyridyl Ruthenium Complex

Michael Appold^a, Cristina Mari^b, Christina Lederle^c, Johannes Elbert^{a,†}, Claudia Schmidt^d, Ingo Ott^d, Bernd Stühn^c, Gilles Gasser^{e,*}, and Markus Gallei^{a,*}

Corresponding authors: m.gallei@mc.tu-darmstadt.de; gilles.gasser@chimie-paristech.fr

Figure S1. Molar mass distributions obtained by SEC measurements vs. PMMA standards in DMF obtained for the PMMA₁₃-*co*-PDMAEMA₂₂ precursor (black line) and the corresponding (PMMA₁₃-*co*-PDMAEMA₂₂)-*b*-PDMAEMA₁₃₂ BCP (red).

Figure S2. ¹H NMR spectrum of (PMMA₁₃-co-PDMAEMA₂₂)-b-PDMAEMA₁₃₂ in CDCl₃.

Figure S3. DSC thermogram of (PMMA₁₃-*co*-PDMAEMA₂₂)-*b*-PDMAEMA₁₃₂. The applied heat rate for the DSC run was 10 K min⁻¹.

Figure S4. Molar mass distributions obtained by SEC measurements vs. PMMA standards in DMF obtained for the PMMA₆₃ precursor (black line) and the corresponding PMMA₆₃-*b*-PDMAEMA₂₅ BCP (red).

Figure S5. ¹H NMR spectrum of PMMA₆₃-*b*-PDMAEMA₂₅ in CDCl₃.

Figure S6. DSC thermogram of $PMMA_{63}$ -*b*-PDMAEMA₂₅. The applied heat rate for the DSC run was 10 K min⁻¹.

Figure S7. Molar mass distributions obtained by SEC measurements vs. PMMA standards in DMF obtained for the PMMA₁₉-*co*-PDMAEMA₂₂ precursor (black line) and the corresponding (PMMA₁₉-*co*-PDMAEMA₂₂)-*b*-PDMAEMA₁₉₁ BCP (red).

Figure S8. ¹H NMR spectrum of (PMMA₁₉-co-PDMAEMA₂₂)-b-PDMAEMA₁₉₁ in CDCl₃.

Figure S9. DSC thermogram of (PMMA₁₉-*co*-PDMAEMA₂₂)-*b*-PDMAEMA₁₉₁. The applied heat rate for the DSC run was 10 K min⁻¹.

Figure S10. DSC thermogram of $PMMA_{54}$ -*b*-PDMAEMA₉₅. The applied heat rate for the DSC run was 10 K min⁻¹.

Figure S11. Results on turbidity measurements for statistical PDMAEMA-*co*-PMMA copolymers featuring different amounts of MMA.

Figure S12. Correlation of MMA content as part of the statistical PDMAEMA-*co*-PMMA copolymers featuring different amounts of MMA with the LCST (see also Figure S11).

Table S1. Characterization of BCPs used in this study with respect to glass transition (T_g) temperature and lower critical solution temperature (LCST).

polymer	<i>Т_{g1}</i> (°С) ^а	<i>T_{g2}</i> (°C) ^a	<i>LCST</i> ¹ (°C)	LCST ₂ (°C)
PMMA ₆₃ -b-PDMAEMA ₂₅	109	-	-	55
PMMA ₅₄ - <i>b</i> -PDMAEMA ₉₅	100	48		55
(PMMA ₁₉ -co-PDMAEMA ₂₂)-b-PDMAEMA ₁₉₁	97	30	7	55
(PMMA ₁₃ -co-PDMAEMA ₂₂)-b-PDMAEMA ₁₃₂	100	30	22	55

^a T_g determined by DSC measurements in °C.

Figure S13. Photograph of PDMAEMA-containing BCP micelles after dialysis in water. In the case micelles loaded with $[Ru(bipy)_2-dppz-7-hydroxymethyl][PF_6]_2$ complex **7**, the solution featured a slightly yellow to orange colour (right).

Fig. S14 TEM images of empty BCP micelles of $(PMMA_{13}-co-PDMAEMA_{22})-b-PDMAEMA_{132}$ obtained after drop-casting on carbon-coated copper grids followed by staining with iodine.

Table S2. Comparison of BCPs used in this study with respect to molar ratio (x), weight ratio (w) and volume ratio (θ).

polymer	X _{PMMA/PDMAEMA}	W _{PMMA} /PDMAEMA	$\theta_{\text{PMMA/PDMAEMA}^{a}}$
PMMA ₆₃ -b-PDMAEMA ₂₅	72/28	62/38	64/36
PMMA ₅₄ -b-PDMAEMA ₉₅	36/64	27/73	29/71
PMMA ₁₉ -co-PDMAEMA ₂₂	45/55	35/65	37/63
(PMMA ₁₉ -co-PDMAEMA ₂₂)-b-PDMAEMA ₁₉₁	8/92	5/95	6/94
PMMA ₁₃ -co-PDMAEMA ₂₂	38/62	28/72	30/70
(PMMA ₁₃ -co-PDMAEMA ₂₂)-b-PDMAEMA ₁₃₂	8/92	5/95	6/94

a) The volume fraction of the block segments was estimated using the densities: 1.18 and 1.32 g cm⁻³ for PMMA and PDMAEMA.

Table S3. Comparison of BCPs used in this study with respect to Zeta potential, Zeta deviation, conductivity and pH.

Micellar solution in water	Zeta Potential (mV)	Zeta Deviation (mV)	<i>Conductivity</i> (mS cm ⁻¹)	рН
[Ru(bipy) ₂ -dppz-7-hydroxymethyl][PF ₆] ₂ ^a	18.1	4.69	0.564	3.15 ^c
PMMA ₆₃ -b-PDMAEMA ₂₅ ^b	24.5	6.98	0.129	7.81 ^d
PMMA ₅₄ - <i>b</i> -PDMAEMA ₉₅ ^b	19.6	3.90	0.131	8.17 ^e
(PMMA ₁₉ - <i>co</i> -PDMAEMA ₂₂)- <i>b</i> -PDMAEMA ₁₉₁ ^b	9.6	3.33	0.213	8.50 ^f
(PMMA ₁₃ -co-PDMAEMA ₂₂)-b-PDMAEMA ₁₃₂ ^b	13.1	3.49	0.208	8.03 ^g

^a pH determined with a concentration of 1 mg/mL. ^b pH determined with a concentration of 10 mg/mL. ^c pH determined at 22.8 °C. ^d pH determined at 22.4 °C. ^e pH determined at 22.6 °C. ^f pH determined at 22.9 °C. ^g pH determined at 23.5 °C.

Fig. S15 q² dependence of inverse relaxation times to determine diffusion coefficient and resulting hydrodynamic radii for the slow process of the BCP micelles measured at 20 °C.

Figure S16. q^2 dependence of scaled inverse relaxation times to determine diffusion coefficient and resultant hydrodynamic radii for the slow process of the aggregates (left) and the fast process of the BCP micelle motions (right), measured in the temperature range of 40 °C – 6 °C.

Figure S17. Temperature dependence of hydrodynamic radii of the BCP micelle aggregates in water for polymer (PMMA₁₃-*co*-PDMAEMA₂₂)-*b*-PDMAEMA₁₃₂.

Scheme S1. Simplified scheme for the influence of different external triggers comprising T, ultrasound and pH change to the BCP micelles. While the application of temperature leads to a change of the micelle sizes due to dilution of some part of the statistical block segments (top), ultrasound is expected to dissipate the micelles (followed by reformation of the micelles, see Introduction). Change to lower pH values causes an introduction of charges to the polymer chain, hence diluting the micelles in water which is accompanied with a ruthenium release.

Figure S18 Release profile for BCP micelles loaded with Ru(II) complex **7** based on PMMA₅₄*b*-PDMAEMA₉₅ by using ultrasound. The amount of released Ruthenium was determined by AAS.

Table S4. Characterization via AAS of BCPs used in this study with respect to Ru content after different stimuli.

	(PMMA ₁₉ - <i>co</i> -PDMAEMA ₂₂)- <i>b</i> - PDMAEMA ₁₉₁		(PMMA ₁₃ - <i>co</i> -PDMAEMA ₂₂)- <i>b</i> - PDMAEMA ₁₃₂		
	Released (µM)	<i>Not released</i> (μM)	Released (µM)	Not released (µM)	
ultrasound	84.89	19.72	127.64	0.45	
рН	292.45	0.52	178.99	2.92	
3 °C	167.09	0.78	110.96	0.63	