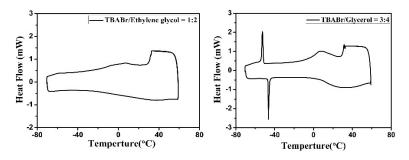
Supporting Information for

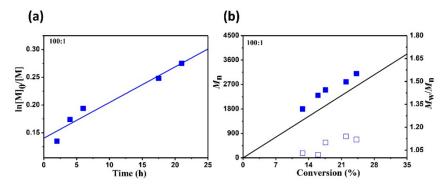
Deep eutectic solvents for green and efficient ironmediated ligand-free atom transfer radical polymerization

Jirong Wang^a, Jianyu Han^a, Mohd Yusuf Khan^b, Dan He^c, Haiyan Peng^a, Dianyu Chen^{d*}, Xiaolin Xie^a and

Zhigang Xue^a*


*Correspondence to: zgxue@mail.hust.edu.cn; <u>chendy@cslg.cn</u>

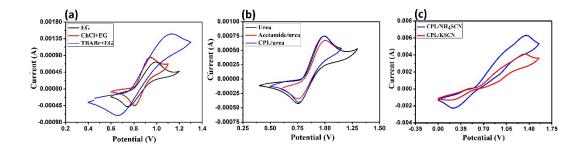
Polymerization Data:


Table. S1 The chemical shifts with different ratios of DESs.

DESs	Chemical shift (ppm)							
	0:3	1:3	2:3	3:4	3:2	3:1	3:0	
^a TBABr:Gly	4.498	4.489	4.483	4.478	4.476	4.474	NA	
^b Ac:KSCN	7.354	7.335	7.306	7.305	7.298	7.294	NA	
°CPL:Ac	6.731	6.720	6.706	6.704	6.698	6.694	NA	

^aThe chemical shifts of OH in Glycerol; ^bThe chemical shifts of NH₂ in Acetamide; ^cThe chemical shifts of NH₂ in Acetamide.

Figure S1. Melting point of TBABr:EG 1:2 and TBABr:Gly 3:4 detected by differential scanning calorimetry (DSC).


Figure S2. $\ln([M]_0/[M])$ as a function of time (a) and evolution of number-average molecular weight $(M_{n,GPC})$ and molecular weight distribution (M_w/M_n) versus conversion (b) for ATRP of MMA with trace amount of DES. Polymerization conditions (a) $[MMA]_0:[FeBr_2]_0:[EBPA]_0 = 100:1:1$, MMA/DES(v/v) = 100:1 without any additional ligand, 60 °C.

entry	Additives	E _{pc} (V)	E _{pa} (V)	$\Delta E_{p}(V)$	E _{1/2} (V)
1	EG	0.752	0.999	0.247	0.876
2	Urea	0.754	0.997	0.243	0.875
3	TBABr/EG	0.756	0.994	0.238	0.873
4	ChCl/EG	0.798	0.940	0.142	0.869
5	Urea/CPL	0.751	1.005	0.254	0.878
6	Urea/Acetamid	0.765	0.991	0.226	0.878

Table. S2 Redox potentials of FeBr₂ with different types of additives measured in methanol.

 $[FeBr_2]_0/[Additives]_0 = 1:2$, DES =64 µL. E_{pa} and E_{pc} are the peak potentials of the oxidation and reduction waves, respectively. $\Delta E_p = E_{pa} - E_{pc}$, $E_{1/2} = (E_{pa} + E_{pc})/2$.

e

Figure S3. Cyclic voltammograms (50mV/s) of FeBr₂ (1.2mM) with different types of additives as the ligands in methanol at room temperature. $[Et_4NBF_4] = 0.1M$ (supporting electrolyte). $[DES]_0 = 64 \text{ uL}$, $[FeBr_2]_0/[additives] = 1:2$.