CO₂ adsorption and catalytic application of imidazole ionic liquid functionalized porous organic polymers

Shuang Hao, Yuchuan Liu, Chuning Shang, Zhiqiang Liang* and Jihong Yu* State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China

Email: liangzq@jlu.edu.cn; jihong@jlu.edu.cn

Supporting Information

Fig. S1 TG analysis of POPs-B0, POPs-B10 and POPs-B20.

Fig. S2 SEM (a-c) and TEM images (d-f) of POPs-B0, POPs-B10 and POPs-B20

Fig. S3 Pore size distribution of POPs-B0, POPs-B10 and POPs-B20 calculated using NL-DFT methods.

Heat of CO₂ Adsorption Calculation

The isosteric heats (Q_{st}) of adsorption for **POPs-B0, POPs-B10** and **POPs-B20** were calculated by fitting the CO₂ adsorption isotherms measured at 273 K, 283 K and 298 K to the Viral equation.

$$\ln P = \ln N + \frac{1}{T} \sum_{i=0}^{m} a_i N_i + \sum_{i=0}^{n} b_j N_i$$

$$Q_{st} = -R \sum_{i=0}^{m} a_i N_i$$

- *N*: adsorbed volume (cm^3/g);
- *P*: pressure (mmHg);
- T: temperature (K);
- a_i, b_j : constants;
- *R*: 8.314 J·mol⁻¹·K⁻¹

Fig. S4 Virial fitting for CO₂ isotherms of POPs-B0.

Fig. S5 Virial fitting for CO₂ isotherms of POPs-B10.

Fig. S6 Virial fitting for CO₂ isotherms of POPs-B20.

Fig. S7 ¹H NMR spectrum of 2-(4-bromophenyl)-1H-benzoimidazole.

Fig. S8 ¹H NMR spectrum of 2-(4-cyanophenyl)-1H-benzimidazole.

Fig. S9 ¹H NMR spectrum of 2-(4-chlorophenyl)-1H-benzimidazole.

Fig. S10 ¹H NMR spectrum of 2-(4-nitrophenyl)-1H-benzimidazole.

Table	e S1	Elemental	analysis	of P	POPs-B	0, POP	Ps-B10	and P	OPs-B20.
-------	------	-----------	----------	------	--------	--------	--------	--------------	----------

Samula	Ob	served Valu	ues	Theoretical Values			
Sample	C [%]	H [%]	N [%]	C [%]	H [%]	N [%]	
POPs-B0	82.16	5.45	0	94.12	5.88	0	
POPs-B10	80.60	5.09	1.41	88.97	5.92	2.26	
POPs-B20	86.20	5.96	3.77	85.53	5.93	3.77	

Sample	Fe [‰]
POPs-B0	0.042
POPs-B10	0.031
POPs-B20	0.036

Table S2 ICP analyses of POPs-B0, POPs-B10 and POPs-B20.

Table S3 The yields of POPs.

POPs	<i>p</i> -DCX	N-MI	-HCl	Calculated	Found	Yield (%)
DA	963 mg		401.5 mg	561 5 mg	547 mg	97.4
DU	5.5 mmol	_	11.0 mmol	501.5 llig		
D 10	963 mg	41 mg	383.25 mg	620.75 mg	566 mg	91.2
D10	5.5 mmol	0.5 mmol	10.5 mmol	020.75 llig		
B 20	963 mg	75 mg	368.65 mg	660 35 mg	601 mg	90.2
D20	5.5 mmol	0.9 mmol	10.1 mmol	009.55 llig	004 llig	

DOD	CO ₂ uptake	DC	DOD	CO ₂ uptake	Dof	
POPs	(mmol/g)	Kei.	POPs	(mmol/g)	Kei.	
POPs-B10	3.20	This	POM1-IM	3.12		
POPs-B20 3.29		work	POM2-IM	3.30		
GPOP-1	2.0		POM3-IM	3.23	o	
GPOP-2	2.39	1	POM4-IM	2.41	8	
GPOP-3	2.77		POM5-IM	1.30	-	
Th-1	2.89		POM6-IM	1.25		
Py-1	2.70	2	Glc-1	2.29	-	
Fu-1	2.20		Glc-2	2.37		
THPS	3.57	3	Glc-3	2.41	0	
PAF-32	1.66		Gal-1	2.69	9	
PAF-32-NH ₂	1.62	4	Gal-1	2.35		
PAF-32-OH	2.27		Ara-1	1.69		
TSP-1	3.0	5	CB-PCP-1	2.05	10	
TSP-2	4.1	5	CMP-1-NH ₂	1.64		
CPOP-16	CPOP-16 2.34		CMP-1-(OH) ₂	1.80	11	
CPOP-17	2.50		СМР-1-СООН	1.60		
CPOP-18	3.43	0	PAF-1	2.05		
CPOP-19	3.80		PAF-3	3.48	12	
HCP-1	3.01		PAF-4	2.41		
HCP 2	3.30	7	PCBZ	1.13	12	
Нср-3	3.24		PCBZL	1.46	13	
Hcp-4	3.92		CPOP-1	4.82	14	

Table S4 Summary of CO₂ uptakes in porous organic polymers at 273 K and 1 atm.

References

- T. Wang, Y.-C. Zhao, M. Luo, L.-M. Zhang, Y. Cui, C.-S. Zhang and B.-H. Han, *Polymer*, 2015, 60, 26.
- 2. Y. L. Luo, B. Y. Li, W. Wang, K. B. Wu and B. E. Tan, Adv. Mater., 2012, 24,

5703.

- C. Zhang, P.-C. Zhu, L. X. Tan, J.-M. Liu, B. E. Tan, X.-L. Yang and H.-B. Xu, Macromolecules, 2015, 48, 8509.
- X. F. Jing, D. L. Zou, P. Cui, H. Ren and G. S. Zhu, J. Mater. Chem. A, 2013, 1, 13926.
- X. Zhu, S. M. Mahurin, S.-H. An, C.-L. Do-Thanh, C. C. Tian, Y. K. Li, L. W. Gill, E. W. Hagaman, Z. J. Bian, J.-H. Zhou, J. Hu, H. L. Liu and S. Dai, *Chem. Commun.*, 2014, **50**, 7933.
- L. Pan, Q. Chen, J.-H. Zhu, J.-G. Yu, Y.-J. He and B.-H. Han, *Polym. Chem.*, 2015, 6, 2478.
- C. F. Martín, E. Stöckel, R. Clowes, D. J. Adams, A. I. Cooper, J. J. Pis, F. Rubiera and C. Pevida, *J. Mater. Chem.*, 2011, 21, 5475.
- J. Q. Wang, W. H. Sng, G. S. Yi and Y. G. Zhang, *Chem. Commun.*, 2015, 51, 12076.
- H. Y. Li, B. Meng, S. M. Mahurin, S.-H. Chai, K. M. Nelson, D. C. Baker, H. L. Liu and S. Dai, *J. Mater. Chem. A*, 2015, **3**, 20913.
- A. Dani, V. Crocellà, C. Magistris, V. Santoro, J. Y. Yuan and S. Bordiga, J. Mater. Chem. A, 2017, 5, 372.
- 11. R. Dawson, D. J. Adams and A. I. Cooper, Chem. Sci., 2011, 2, 1173.
- T. Ben, C. Y. Pei, D. L. Zhang, J. Xu, F. Deng, X. F. Jing and S. L. Qiu, *Energy Environ. Sci.*, 2011, 4, 3991.
- M. Saleh, S. Bin Baek, H. M. Lee and K. S. Kim, J. Phys. Chem. C, 2015, 119, 5395.
- 14. Q. Chen, M. Luo, P. Hammershøj, D. Zhou, Y. Han, B. W. Laursen, C.-G. Yan, and B.-H. Han, *J. Am. Chem. Soc.*, 2012, **134**, 6084.