Supplementary Information

The *in situ* formation of nanoparticles *via* RAFT polymerization-induced self-assembly in a continuous tubular reactor

Jinying Peng, Chun Tian, Lifen Zhang*, Zhenping Cheng* and Xiulin Zhu*

Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Contents

Fig. S1 The evolution of monomer conversion with time (a), and numberaverage molecular weight ($M_{n,GPC}$) and molecular weight distribution (M_w/M_n) versus conversion (b) for the PISA of MMA in batch reactor (BR) and continuous tube reactor (TR). Polymerization conditions: [PEGMA]₀/[CPADB]₀/[AIBI]₀ = 40/1/0.2, $R_v^1 = V_{PEGMA}/V_{water}/V_{ethanol} = 2/19.9/6.9$, [MMA]₀/[macro-CTA]₀/[AIBI]₀ = 330/1/0.3, T = 70 °C.

Fig. S2 The evolution of monomer conversion with time (a), and numberaverage molecular weight ($M_{n,GPC}$) and molecular weight distribution (M_w/M_n) versus conversion (b) for the PISA of MMA in batch reactor (BR) and continuous tube reactor (TR). Polymerization conditions: [PEGMA]₀/[CPADB]₀/[AIBI]₀ = 40/1/0.2, $R_v^1 = V_{PEGMA}/V_{water}/V_{ethanol} = 2/33.9/12.1$, [MMA]₀/[macro-CTA]₀/[AIBI]₀ = 500/1/0.3, T = 70 °C.

Fig. S3 TEM images of nanoparticles *via* PISA in a batch reactor with molar ratio of $[MMA]_0/[macro-CTA]_0/[AIBI]_0 = 330/1/0.3$ (a), and size distribution of nanoparticles from TEM images (b) for different polymerization times: (A) 45 min (MMA conv. 39.6%), (B) 60 min (55.3%), (C) 90 min (69.7%), (D) 120 min (83.4%).

Fig. S4 TEM images of nanoparticles *via* PISA in a batch reactor with molar ratio of $[MMA]_0/[macro-CTA]_0/[AIBI]_0 = 500/1/0.3$ (a), and size distribution of nanoparticles from TEM images (b) for different polymerization times: (E) 45 min (MMA conv. 22.5%), (F) 60 min (27.3%), (G) 90 min (43.2%), (H) 120 min (54.3%).

Fig. S5 Size distribution of nanoparticles from TEM images, (a), (b), (c) and (d), corresponding to Fig. 4, Fig. 5, Fig. 7, and Fig. 8, respectively.

Fig. S6 GPC traces for the polymerization of PEGMA, (a) $R_v^1 = 2/19.9/6.9$, TR; (b) $R_v^1 = 2/33.9/12.1$, TR; (c) $R_v^1 = 2/19.9/6.9$, BR; (d) $R_v^1 = 2/33.9/12.1$, BR.

Fig. S7 GPC traces for the polymerization-induced self-assembly of MMA, (a) $[MMA]_0/[macro-CTA]_0 = 330/1$, TR; (b) $[MMA]_0/[macro-CTA]_0 = 500/1$, TR; (c) $[MMA]_0/[macro-CTA]_0 = 330/1$, BR; (d) $[MMA]_0/[macro-CTA]_0 = 500/1$, BR.

Entry	R_v^1	Conv. (%)	DP	M _{n,GPC} (g/mol)	M _w /M _n	Ha	H _{b+c}	H _d
1	2/12.9/4.3	96.4	40	14700	1.05	2.00	83.32	3.36
2	2/19.9/6.9	94.2	40	14700	1.05	2.00	51.53	2.04
3	2/26.9/9.5	92.0	39	14400	1.05	2.00	37.59	1.49
4	2/33.9/12.1	90.3	39	14400	1.05	2.00	30.87	1.19
5	2/67.8/24.2	75.9	33	13700	1.05	2.00	12.46	0.48
6	2/135.6/48.4	44.8	19	10500	1.06	2.00	5.43	0.21
^a Polyn	nerization condi	tions: R ₁	= [PEC	GMA] ₀ /[CP/	ADB] ₀ /[All	BI] ₀ = 4	40/1/0.2,	$R_v^1 =$
$V_{\text{PEGMA}}/V_{\text{water}}/V_{\text{ethanol}}$, Length ₁ = 11 m, v_{M1} = 0.262 mL min ⁻¹ , τ_1 =101.0 min,								

Table S1 The conversation and the DP of PPEGMA in different conditions^a

5

[MMA]₀/[macro-CTAs]₀/[MMA]₀ =x/1/0.3 (x ≈ 230, 330, 420, 500, 1000, and 2000), T

= 70 °C. H_a , $H_{b + c}$, and H_d corresponded to integral of the peaks a, b+c, and d (as shown in Fig. S8), respectively.

Fig. S8 ¹H NMR spectra of unpurified PPEGMA (included unreacted PEGMA) with different DPs in DMSO-d₆.

Fig. S9 Size distribution of nanoparticles from TEM images, corresponding to Fig. 10.