Polymerization-induced Self-Assembly of PVAc-*b*-PVDF block copolymers via RAFT dispersion polymerization of VDF in dimethylcarbonate

Marc Guerre,^{*a*} *Mona Semsarilar*,^{*b*} *Franck Godiard*,^{*c*} *Bruno Améduri*,^{*a*} *Vincent Ladmiral*[†]*

^AInstitut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM – Equipe Ingénierie et Architectures Macromoléculaires, ENSCM 8, rue de l'école normale, 34296 cedex 5, Montpellier, France. ^bInstitut Européen des Membranes, IEM, UMR-5635, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France. ^cService de Microscopie Electronique, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier

[°]Service de Microscopie Electronique, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier cedex 5, France.

SUPPORTING INFORMATION

Equations used to determine the degree of polymerization and molar masses of PVAc macro-CTAs

$$(S1) DP_{PVAc} = \frac{\int_{4.76}^{5.14} CH(OAc) + \frac{1}{2} \int_{3.18}^{3.51} - CH_2 - XA + \frac{1}{2} \int_{3.95}^{4.13} - CH(OAc) - H + \int_{6.50}^{6.70} - CH(OAc) - XA}{\frac{1}{3} \int_{1.37}^{1.46} - CH_3 (R - CTA)}$$

$$(S2) M_{n,theo} = \frac{[VAc]_0}{[CTA]_0} \times Yield \times M_{n,VAc} + M_{n,CTAXA}$$

(S3) $M_{n,PVAC-XA} = M_{n,CTAXA} + DP \times M_{n,VAC}$

With $M_{n,VAc} = 86.09$ g/mol, and $M_{n, CTAXA} = 208.29$ g/mol.

Equations used to determine the proportions of the polymers chain ends:

1) PVDF:

$$(S4) (\%) PVDF_{T} - XA = \frac{\frac{1}{2}\int_{4.02}^{4.17} - CF_{2} - CH_{2} - XA}{\frac{1}{2}\int_{3.26}^{3.52} - CH_{2} - CF_{2} - XA + \int_{6.01}^{6.48} - CH_{2} - CF_{2}H + \frac{1}{2}\int_{4.02}^{4.17} - CF_{2} - CH_{2} - XA + \frac{1}{3}\int_{1.71}^{1.87} - CF_{2} - CH_{3}}$$

$$(S5) (\%) PVDF_{H} - XA = \frac{\frac{1}{2}\int_{3.26}^{3.52} - CH_{2} - CF_{2} - XA}{\frac{1}{2}\int_{3.26}^{3.52} - CH_{2} - CF_{2} - CH_{2} - CF_{2} - XA}$$

$$(S6) (\%) PVDF_{H+T} - H = \frac{\int_{6.01}^{6.48} - CH_{2} - CF_{2}H + \frac{1}{3}\int_{1.71}^{1.87} - CF_{2} - CH_{3}}{\frac{1}{2}\int_{3.26}^{3.52} - CH_{2} - CF_{2} - XA + \int_{6.01}^{6.48} - CH_{2} - CF_{2}H + \frac{1}{3}\int_{4.02}^{1.87} - CF_{2} - CH_{3}}$$

$$(S6) (\%) PVDF_{H+T} - H = \frac{\int_{6.01}^{6.48} - CH_{2} - CF_{2}H + \frac{1}{3}\int_{1.71}^{1.87} - CF_{2} - CH_{3}}{\frac{1}{2}\int_{3.26}^{3.52} - CH_{2} - CF_{2} - XA + \int_{6.01}^{6.48} - CH_{2} - CF_{2}H + \frac{1}{3}\int_{4.02}^{1.87} - CF_{2} - CH_{3}}$$

2) PVAc:

$$(S7) (\%) - CH(OAc) - CH_2 - XA = \frac{\frac{1}{2}\int_{3.18}^{3.51} -CH(OAc) - CH_2 - XA}{\frac{1}{2}\int_{3.18}^{3.51} -CH(OAc) - CH_2 - XA + \frac{1}{2}\int_{3.95}^{4.13} -CH_2 - (OAc)CH_2 + \int_{6.50}^{6.70} -CH_2 - CH(OAc) - XA}$$

$$(S8) (\%) - CH_2 - CH(OAc) - XA = \frac{\int_{6.50}^{6.70} - CH_2 - CH(OAc) - XA}{\frac{1}{2}\int_{3.18}^{3.51} - CH(OAc) - CH_2 - XA + \frac{1}{2}\int_{3.95}^{4.13} - CH_2 - (OAc)CH_2 + \int_{6.50}^{6.70} - CH_2 - CH(OAc) - XA}$$

$$(S9) (\%) - CH_2 - (OAc)CH_2 = \frac{\frac{1}{2}\int_{3.95}^{4.13} - CH_2 - (OAc)CH_2}{\frac{1}{2}\int_{3.18}^{3.51} - CH(OAc) - CH_2 - XA + \frac{1}{2}\int_{3.95}^{4.13} - CH_2 - (OAc)CH_2 + \int_{6.50}^{6.70} - CH_2 - CH(OAc) - XA}$$

Run	PVAc _x - <i>b</i> -PVDF _y X/Y (precipitated BCP)	wt. % (PVAc/PVDF) crude	mol % (PVAc/PVDF) crude	wt. % (PVAc/PVDF) precipitated
2	18/18	85/15	79/21	57/43
3	18/78	51/49	59/41	24/76
4	18/145	31/69	23/77	14/86
5	18/257	16/84	12/88	9/91
7	115/502	55/45	52/48	24/86
9	96/205	74/26	67/33	39/61
10	96/303	57/43	48/52	30/70
11	96/442	36/64	29/71	22/78

 Table S1. Weight and molar fractions of crude and precipitated PVAc-b-PVDF BCPs.

Figure S1. COSY ¹H-¹H NMR spectrum in $(CD_3)_2CO$ of PVAc₁₈-XA synthesized by RAFT polymerization (run 1 Table 1). The red line shows the -**CH**₂-(CH₃(C=O)O**CH**-XA correlation (PVAc_H-XA); the blue line shows the -**CH**(O(C=O)CH₃)-**CH**₂-XA correlation (PVAc_T-XA); the green line shows the CH₃O(C=O)(**CH**₃)**CH**- correlation (α chain end).

Figure S2. ¹H NMR spectrum in (CD₃)₂CO of PVAc₁₈-XA (red, bottom, run 1 Table 1), PVAc₁₁₅-XA (green, middle, run 6 Table 1), PVAc₉₆-XA (blue, top, run 8 Table 1), synthesized by RAFT polymerization.

Figure S3. Normalized SEC traces (viscosimetric detector) of: a) PVAc₁₁₅-XA and crude PVAc₁₁₅-*b*-PVDF BCP; b) PVAc₁₁₅-XA and PVAc₁₁₅-*b*-PVDF BCP precipitated in methanol; c) PVAc₉₆-XA and crude PVAc₉₆-*b*-PVDF BCP; and d) PVAc₉₆-XA and PVAc₉₆-*b*-PVDF BCP precipitated in methanol.

Figure S4. Full ¹H NMR spectra in $(CD_3)_2CO$ of a) PVAc₁₈-XA (run 1, Table 1), b) PVAc₁₈-*b*-PVDF₇₈ crude c) PVAc₁₈-*b*-PVDF₇₈ precipitated in methanol (d) the methanol soluble fraction resulting from the precipitation of PVAc₁₈-*b*-PVDF₇₈ in cold methanol.

Figure S5. ¹⁹F NMR spectrum in (CD₃)₂CO of precipitated PVAc₁₈-*b*-PVDF₇₈ BCP (run 3, Table 1).

Figure S6. ¹H NMR spectrum in (CD₃)₂CO of precipitated PVAc₁₁₅-*b*-PVDF₅₀₂ BCP (run 7, Table 1).

blue signal) and PVAc₁₁₅-*b*-PVDF₅₀₂ BCP (run 7, Table 1, red signal).

Figure S8. Expansion of the 3.05 to 7.1 ppm region of the ¹H NMR spectra in $(CD_3)_2CO$ of a) PVAc₁₈-XA (run 1, Table 1), b) Crude PVAc₁₈-*b*-PVDF₇₈ (run 3, Table 1) c) PVAc₁₈-*b*-PVDF₇₈ (run 3, Table 1) precipitated in methanol (d) the methanol soluble fraction resulting from the precipitation of PVAc₁₈-*b*-PVDF₇₈ (run 3, Table 1) in cold methanol.

Figure S9. a) COSY ¹H-¹H NMR spectrum in $(CD_3)_2CO$ of precipitated PVAc₁₁₅-*b*-PVDF₅₀₂ BCP (run 7, Table 1). The red lines highlight the correlation between the -CH₂- group of DMC and the CH₂ of the first added VDF unit in PVDF chains initiated by DMC b) ¹H NMR spectrum in $(CD_3)_2CO$ of precipitated PVAc₁₁₅-*b*-PVDF BCP (run 7, Table 1). The expansion of the signals at 2.35-2.55 ppm (red box) shows the experimental pattern (with the expected symmetry drawn in red) of $(CH_3OC(O)-O-CH_2-CH_2-CF_2-$ protons and the associated simulated pattern.

Figure S10. Macroscopic aspect of PVAc₁₈-*b*-PVDF₂₅₇ dispersion in DMC (run 5) before and after shaking.

Figure S11. Intensity-average diameter distribution and correlation curve of: a) $PVAc_{18}$ -*b*- $PVDF_{18}$ (run 2, Table 1), b) $PVAc_{18}$ -*b*- $PVDF_{257}$ (run 5, Table 1) and c) $PVAc_{96}$ -*b*- $PVDF_{205}$ (run 9, Table 1) BCPs dispersed in dimethylcarbonate at 1 wt. %.

Figure S12. DSC thermograms first heating a) followed by cooling b) of PVAc-*b*-PVDF dried dispersions: PVAc₁₈-*b*-PVDF₂₅₇ (black), PVAc₁₈-*b*-PVDF₁₄₅ (red) PVAc₁₈-*b*-PVDF₇₈ (blue) and PVAc₁₈-*b*-PVDF₁₈ (pink).

Figure S13. DSC thermograms first heating a) followed by cooling b) of PVAc-*b*-PVDF dried dispersion: PVAc₉₆-*b*-PVDF₄₄₂ (black), PVAc₉₆-*b*-PVDF₃₀₃ (red) and PVAc₁₈-*b*-PVDF₂₀₅ (blue).

Run	X _c (%)	PVAc _x - <i>b</i> -PVDF _y X/Y	wt. % (PVAc/PVDF) crude
2	33	18/18	85/15
3	45	18/78	51/49
4	81	18/145	31/69
5	64	18/257	16/84
9	42	96/205	74/26
10	51	96/303	57/43
11	52	96/442	36/64

Table S2. Degree of crystallinity (X_c) of the PVDF fraction in the BCPs dispersions determined using equations S9 and S10:

$$X_c(\%) = \frac{\Delta H_f}{\Delta H_f^0 \Phi_m} \times 100 \qquad (S10)$$

With $\Delta H_f^0 \Phi_m$ is a heat of fusion of 100 % crystalline PVDF (104.6 J.g⁻¹) and Φ_m is the weight fraction of PVDF.^{1,2}

References:

- 1. K. Nakagawa, Y. Ishida, J. Polym. Sci. Part B, 1973, 11, 2153.
- 2. J. N. Martins, T. S. Bassano, R. V. B. Oliveira, *Materials Science and Engineering C*, 2012, **32**, 146-151.