Supporting information

Synthesis of Midblock-Quaternized Triblock Copolystyrenes as Highly Conductive and Alkaline-Stable Anion-Exchange Membranes

1. FTIR measurements

FTIR spectra were recorded on a Nicolet iS50 FT-IR spectrometer from 4000 to 400 cm⁻¹ with a 4 cm⁻¹ resolution in 64 scans using polymer thin films.

Fig. S1. FTIR spectra of: (a) PS_{140} -PDVPPA₉₀-PS₁₄₀, (b) QA-(PS_{140} -PDVPPA₉₀-PS₁₄₀), and (c) x-QA-(PS_{140} -PDVPPA₉₀-PS₁₄₀)-36 AEMs.

2. PS_m-PDVPPA_{2n}-PS_m based block polymer solubility tests

Table S1. Solubility properties of the synthesised PS_m -PDVPPA_{2n}-PS_m based block polymer at room temperature.

	PS ₁₄₀ -PDVPPA ₉₀ -PS ₁₄₀	QA- (PS ₁₄₀ -PDVPPA ₉₀ -PS ₁₄₀)	ux-QA- (PS ₁₄₀ -PDVPPA ₉₀ -PS ₁₄₀)
Tetrahydrofuran	+/	+/	+/
Acetone	-	-	+/
DMF	+	+	+/
DMSO	+	+	+/
NMP	+	+	+/
Toluene	+/	+/	+/
Xylene	+	+	+/
1,2-dichlorobenzene	+	+	+/
1,1,2,2-tetrachloroethane	+/	+/	+/

Decalin	+/	+/	+/
isopropyl alcohol	-	-	_
2,4,6-trichlorobenzene	+	+	+/

+: soluble; -: insoluble; +/-: partially soluble.

3. PS_m-PDVPPA_{2n}-PS_m based block polymer crosslinking degree (CD) tests

The resulting crosslinkable triblock polymer ux-QA-(PS_{140} -PDVPPA₉₀-PS₁₄₀) (20% of St group) was dissolved in NMP at room temperature (20 wt%) and subsequently cast onto a clean glass plate followed by heating at 80 °C for varying periods of time. The solvent NMP was completely evaporated for 18 h. Subsequently, the gel content of the resulting crosslinked AEMs was tested every 8 h via vigorous Soxhlet extraction.

Fig. S2. Gel content of ux-QA-(PS_{140} -PDVPPA₉₀-PS₁₄₀) (20% of styrene group) as a function of the heating time at 80 °C.

4. Membrane Morphology

Fig.S3 SEM images of: (a) $QA-(PS_{140}-PDVPPA_{90}-PS_{140})$, (b) $QA-(PS_{140}-PDVPPA_{60}-PS_{140})$, (c) x-QA-(PS₁₄₀-PDVPPA_{90}-PS_{140})-18, and (d) x-QA-(PS_{140}-PDVPPA_{90}-PS_{140})-36 AEMs.

5. The actual proportion of quaternarization for crosslinked AEMs

The quaternarization proportion was calculated and the results has been shown in Table S2. **Table S2.** The actual proportion of quaternarization for the crosslinked AEMs.

Sample	IEC _t ^a	IEC _e ^b	Proportion of quaternarization
x-QA-(PS ₁₄₀ -PDVPPA ₉₀ -PS ₁₄₀)-18	2.3	1.84	0.80
x-QA-(PS ₁₄₀ -PDVPPA ₉₀ -PS ₁₄₀)-36	1.9	1.58	0.83

^a theoretical IEC values (meq. g^{-1}); b measured by titration (meq. g^{-1}).