Supporting Information for

Formation of a Tetranickel Octacarbonyl Cluster from the CO₂ Reaction of a Zero-valent Nickel Monocarbonyl Species

Changho Yoo and Yunho Lee*

Center for Catalytic Hydrocarbon Functionalization. Institute of Basic Science (IBS), Daejeon 305-701, Republic of Korea.

Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea.

Contents

Figure S1. ¹ H NMR spectrum of $\{(PN^{COON_a}P)Ni(CO)_2\}_4$ (2) in benzene- d_6 .	S2
Figure S2. ¹³ C NMR spectrum of $\{(PN^{COONa}P)Ni(CO)_2\}_4$ (2) in benzene- d_6 .	S2
Figure S3. ³¹ P NMR spectrum of $\{(PN^{COONa}P)Ni(CO)_2\}_4$ (2) in benzene- d_6 .	S2
Figure S4. ¹ H NMR spectrum of $\{(PN^{COON_a}P)Ni(CO)_2\}_4$ (2) in THF- d_8 .	S3
Figure S5. ¹³ C NMR spectrum of $\{(PN^{COONa}P)Ni(CO)_2\}_4$ (2) in THF-d ₈ .	S3
Figure S6. ³¹ P NMR spectrum of $\{(PN^{COONa}P)Ni(CO)_2\}_4$ (2) in THF- d_8 .	S 3
Figure S7. ¹ H NMR spectrum of $\{(PNP)Ni\}_2 - \mu - CO_3 - \kappa^2 O, O$ (3) in benzene- d_6 .	S4
Figure S8. ¹³ C NMR spectrum of $\{(PNP)Ni\}_2 - \mu - CO_3 - \kappa^2 O, O(3)$ in benzene- d_6 .	S4
Figure S9. ³¹ P NMR spectrum of {(PNP)Ni} ₂ - μ -CO ₃ - $\kappa^2 O$, O (3) in benzene- d_6 .	S4
Figure S10. ¹³ C NMR spectrum of the reaction of 1 with ¹³ CO ₂ .	S5
Figure S11. ¹³ C NMR spectrum of $\{(PN^{13COONa}P)Ni(CO)_x({}^{13}CO)_{2-x}\}_4$ (2- ¹³ CO ₂).	S5
Figure S12. ¹³ C NMR spectrum of 2 and $2^{-13}CO_2$.	S5
Figure S13. Single-pulse ³¹ P NMR spectrum of the reaction of 1 with CO_2 .	S6
Figure S14. Plots of the normalized signal intensities (I/I ₀) versus gradient strength (G) and	l plots of
$\ln(I/I_0)$ versus G ² for 2 , 4 and 6 .	S 7
Table S1. Diffusion constants, R _{solution} and R _{solid} for 2, 4 and 6.	S 8
Figure S15. R _{solid} and R _{solution} for compound 2, 4 and 6.	S 8
Figure S16. IR spectra of 2 and $2^{-13}CO_2$.	S9
Figure S17. IR spectrum of 3.	S9
Figure S18. Solid-state structure of 1 in dimeric assembly.	S10
Table S2. Selected bond distances and angles for 1.	S10
Figure S19. Solid-state structure of a monomer unit of 1.	
S11	
Figure S20. Solid-state structure of 2.	S12
Table S3. Selected bond distances and angles for 2.	S12
Figure S21. Solid-state structure of 3.	S13
Table S4. Selected bond distances and angles for 3.	S13
Figure S22. Solid-state structure of 5.	S14
Table S5. Selected bond distances and angles for 5.	S14
Figure S23. Solid-state structure of {(PNP)NiCOONa} ₂ •(THF).	S15
Table S6. Selected bond distances and angles for {(PNP)NiCOONa} ₂ •(THF).	S15

Figure S1. ¹H NMR spectrum of $\{(PN^{COONa}P)Ni(CO)_2\}_4$ (2) in benzene- d_6 at room temperature.

Figure S2. ¹³C NMR spectrum of $\{(PN^{COON_a}P)Ni(CO)_2\}_4$ (2) in benzene- d_6 at room temperature (•:pentane, •:diethyl ether).

Figure S4. ¹H NMR spectrum of $\{(PN^{COONa}P)Ni(CO)_2\}_4$ (2) in THF- d_8 at room temperature (•:diethyl ether).

Figure S7. ¹H NMR spectrum of $\{(PNP)Ni\}_2 - \mu - CO_3 - \kappa^2 O, O(3)$ in benzene- d_6 at room temperature (•:pentane).

Figure S8. ¹³C NMR spectrum of $\{(PNP)Ni\}_2 - \mu - CO_3 - \kappa^2 O, O$ (3) in benzene- d_6 at room temperature (•:pentane).

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Figure S9. ³¹P NMR spectrum of $\{(PNP)Ni\}_2 - \mu - CO_3 - \kappa^2 O, O$ (3) in benzene-*d*₆ at room temperature.

Figure S10. ¹³C NMR spectrum (collected in THF/benzene- d_6 , 162 MHz at room temperature) of the reaction of 1 with ¹³CO₂.

220 200 180 160 140 120 100 80 60 40 20 0 f1 (ppm)

Figure S12. ¹³C NMR spectrum of $\{(PN^{COONa}P)Ni(CO)_2\}_4$ (2, top) and $\{(PN^{13COONa}P)Ni(CO)_x({}^{13}CO)_{2-x}\}_4$ (2-¹³CO₂, bottom) in benzene-*d*₆ at room temperature. The relative intensities of both two carbonyl peaks at 203.64 and 205.88 ppm compared to a carbamate signal at 165.31 ppm decrease in 2-¹³CO₂, indicating both ¹²CO and ¹³CO are distributed over two different positions.

Figure S13. Single-pulse ³¹P NMR spectrum (collected in THF/benzene- d_6 , 162 MHz at room temperature) of the reaction of **1** (0.186 mmol) with CO₂. Triphenylphosphine oxide (0.093 mmol) was added as an internal integration standard. **2**: 0.022 mmol (48%); **3**: 0.0049 mmol (5.3%); **4**: 0.0077 mmol (8.3%); **6**: 0.0051 mmol (2.8%).

Figure S14. Plots of the normalized signal intensities (I/I₀) versus gradient strength (G) (top) and plots of $\ln(I/I_0)$ versus G² (bottom). The corresponding data obtained from pulsed gradient spin echo experiments for {(PN^{COONa}P)Ni(CO)₂}₄ (**2**, blue), {(PNP)Ni}₂- μ -CO₂- κ^2 *C*,*O* (**4**, red) and (PN^HP)Ni(CO)₂ (**6**, green) in benzene-*d*₆ at room temperature.

Compound	Diffusion constant (×10 ⁻¹⁰ m ² /s)	R _{solution} (Å)	$R_{Solid}({\rm \AA})^a$
2	4.877	7.366	8.8640
4	7.737	4.643	7.0172 ^b
6	10.79	3.329	5.5155

Table S1. Diffusion constants, hydrodynamic radii ($R_{solution}$) and solid state radii (R_{Solid}) for 2, 4 and 6.

^a R_{Solid} is derived from the molecular volume; $R_{Solid} = (3V/4\pi)^{1/3}$. The molecular volume (V) is estimated by the following equation: V = the unit cell volume – the void volume calculated by PLATON.¹

^b This value is overestimated, since the crystal structure of **4** contains a co-crystallized ether molecule.

Figure S15. Solid state (R_{solid} , blue line) and solution state radii ($R_{solution}$, red line) for compound 2, 4 and 6.

¹ (a) P. van der Sluis and A. L. Spek, *Acta Cryst.* 1990, **A45**, 194. (b) A. L. Spek, *PLATON, a Multipurpose Crystallographic Tool*, Utrecht University, The Netherlands, 2001.

Figure S16. IR spectra of $\{(PN^{COONa}P)Ni(CO)_2\}_4$ (2, blue line) and $\{(PN^{13COONa}P)Ni(CO)_x({}^{13}CO)_{2-x}\}_4$ (2- ${}^{13}CO_2$, red line) (top) and the zoomed region of carbonyls and a carbamate vibration (bottom, KBr pellet).

Figure S18. Solid-state structure of $\{Na\} \{(PNP)Ni(CO)\}$ (1) in dimeric assembly with two cocrystallized THF molecules. Hydrogen atoms are omitted for clarity.

Table S2. Selected bond distances and angles for $\{Na\} \{(PNP)Ni(CO)\} (1)$ with two cocrystallized THF molecules (Å and °).

Bond distance		Bond angle	
d _{Ni1-N1}	2.054(1)	∠N1-Ni1-C1	131.12(5)
d _{Ni1-C1}	1.711(1)	∠P1-Ni1-P2	127.48(2)
d _{Ni1-P1}	2.1883(4)	∠N1-Ni1-P1	83.36(3)
d _{Ni1-P2}	2.1799(5)	∠N1-Ni1-P2	86.21(3)
d _{C1-O1}	1.182(2)	∠C1-Ni1-P1	111.39(4)
d _{O1-Na1}	2.259(1)	∠C1-Ni1-P2	113.98(4)
d _{O2-Na1}	2.261(1)	∠Ni1-C1-O1	168.8(1)
d _{Ni1-Na2}	2.8523(5)		
d _{N1-Na2}	2.463(1)		

Figure S19. Solid-state structure of a monomer unit of **1** composed with {(PNP)NiCO}⁻. Both sodium ions, Na1 with two co-crystallized THF molecules and Na2 interacting with nickel and nitrogen are shown; (a) side-, (b) top- and (c) front-view. Hydrogen atoms are omitted for clarity.

Figure S20. Solid-state structure of ${(PN^{COONa}P)Ni(CO)_2}_4$ (2). Hydrogen atoms are omitted for clarity.

 $\label{eq:table_solution} \textbf{Table S3.} Selected bond distances and angles for $$ (PN^{COONa}P)Ni(CO)_2$_4 (2) (Å and °). $$ (PN^{COONa}P)Ni(CO)_2$_4 (2) (A and °). $$ (PN^{COONa}P)Ni(CO)_2$_4 (2) (PN^{COONA}P)Ni(CO)_2$_$

Bond distance		Bond angle	
d _{Ni1-C1}	1.760(8)	∠C1-Ni1-C2	113.5(3)
d _{Ni1-C2}	1.752(7)	∠P1-Ni1-P2	112.78(7)
d _{Ni1-P1}	2.223(2)	∠C1-Ni1-P1	108.3(2)
d _{Ni1-P2}	2.218(2)	∠C1-Ni1-P2	106.1(2)
d _{Ni1-N1}	3.339(5)	∠C2-Ni1-P1	107.9(2)
d _{C1-O1}	1.132(8)	∠C2-Ni1-P2	108.4(2)
d _{C2-O2}	1.155(8)	∠Ni1-C1-O1	177.1(7)
d _{C3-O3}	1.25(1)	∠Ni1-C2-O2	178.0(7)
d _{C3-O4}	1.28(1)	∠03-C3-O4	126.8(9)
d _{Na1-O1}	2.455(6)		
d _{Na1-O3}	2.243(6)		
d _{Na1-O4}	2.200(6)		

Figure S21. Solid-state structure of $\{(PNP)Ni\}_2 - \mu - CO_3 - \kappa^2 O, O(3)$. Hydrogen atoms are omitted for clarity. The carbonate group was disordered over two distinct positions. For clarity, only one component is shown.

Table S4. Selected bond distances and angles for $\{(PNP)Ni\}_2 - \mu - CO_3 - \kappa^2 O, O(3)$ (Å and °).

Bond distance		Bond angle	
d _{Ni1-O1}	1.828(7)	∠N1-Ni1-O1	175.6(4)
d _{Ni1-N1}	1.879(7)	∠P1-Ni1-P2	168.3(1)
d _{Ni1-P1}	2.206(2)	∠N1-Ni1-P1	85.6(2)
d _{Ni1-P2}	2.190(2)	∠N1-Ni1-P2	84.8(2)
d _{Ni2-O3A}	1.87(1)	∠N2-Ni1-O2A	164.2(5)
d _{Ni2-N2}	1.886(7)	∠P3-Ni1-P4	168.6(1)
d _{Ni2-P3}	2.179(2)	∠N2-Ni1-P3	85.7(2)
d _{Ni2-P4}	2.203(2)	∠N2-Ni1-P4	85.8(2)
d _{C1-O1}	1.24(1)	∠01-C1-O2A	129(1)
d _{C1-O2A}	1.31(2)	∠02A-C1-O3A	110(1)
d _{C1-O3A}	1.34(2)	∠03A-C1-01	115(1)

Figure S22. Solid-state structure of (PNP)Ni(CO) (5). Hydrogen atoms are omitted for clarity.

Table S5. Selected bond distances and angles for (PNP)Ni(CO) (5) (Å and °).

Bond distance		Bond angle	
d _{Ni1-N1}	1.962(3)	∠N1-Ni1-C1	149.3(3)
d _{Ni1-C1}	1.815(7)	∠P1-Ni1-P2	152.00(5)
d _{Ni1-P1}	2.215(1)	∠N1-Ni1-P1	85.5(1)
d _{Ni1-P2}	2.224(1)	∠N1-Ni1-P2	83.6(1)
d _{C1-O1}	1.119(7)	∠C1-Ni1-P1	98.7(2)
		∠C1-Ni1-P2	103.8(2)
		∠Ni1-C1-O1	171.3(7)

Figure S23. Solid-state structure of $\{(PNP)NiCOONa\}_2 \cdot (THF)$. Hydrogen atoms are omitted for clarity.

Table S6. Selected bond distances and angles for {(PNP)NiCOONa}2•(THF) (Å and °).

Bond distance		Bond angle	
d _{Ni1-N1}	1.9611(9)	∠N1-Ni1-C1	174.30(5)
d _{Ni1-C1}	1.882(1)	∠P1-Ni1-P2	170.61(1)
d _{Ni1-P1}	2.1546(3)	∠N1-Ni1-P1	85.37(3)
d _{Ni1-P2}	2.1499(3)	∠N1-Ni1-P2	85.48(3)
d _{C1-O1}	1.260(1)	∠C1-Ni1-P1	96.46(3)
d _{C1-O2}	1.271(1)	∠C1-Ni1-P2	92.85(3)
d _{Na1-O1}	2.352(1)	∠01-C1-O2	124.0(1)
d _{Na1-O2}	2.217(1)		
d _{Na1-O2} ,	2.459(1)		
d _{Na1-O3}	2.290(1)		
d _{Na1-O4}	2.447(1)		