Electronic Supplementary Information 1 2 Stirring hydrothermal synthesis of ultra long α -MnO₂ nanowires for 3 oxygen reduction reaction 4 Kaixiang Lei^{a†}, Liang Cong^{a†}, Xiaorui Fu^a, Fangyi Cheng^{a*} and Jun Chen^{a,b} 5 ^a Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), 6 7 College of Chemistry, ^b Collaborative Innovation Center of Chemical Science and 8 Engineering, Nankai University, Tianjin 300071, China *E-mail: fycheng@nankai.edu.cn. Fax:* +86-22-23509571. Tel: +86-22-23497717. 9 [†]These authors contribute equally to this work. 10

11 Experimental

12 Synthesis

13 The preparation of ultra long MnO_2 nanowires involves two steps: synthesis of 14 MnO_x intermediate through hydrothermal with stirring, and heat treatment of 15 MnO_x in air. Briefly, 100 mg of commercial MnO_2 powders was dispersed into 16 20 ml of $NH_3 \cdot H_2O$ solution. After continuous stirring for 10 min, the above-17 mentioned mixture was transferred into a 50 ml Teflon-lined autoclave with a 18 magnetic stirrer. Then, the autoclave was loaded into a silicon oil bath on a hot 19 plate. The synthesis was optimized by adjusting reaction temperature, 20 concentration of $NH_3 \cdot H_2O$ solution, and reaction time. After being cooled to

room temperature, the as-obtained precipitates were centrifuged, washed with
deionized water and absolute alcohol and finally vacuum-dried at 80 °C overnight.
The intermediate was calcined at 300 °C for 1 h in air to obtain ultra long MnO₂
nanowires. For comparison, similar procedures were used to prepare MnO_x
nanorods/nanowires with no or weak magnetic stirring. Table S1 lists the typical
synthetic parameters.

2	5	ł	2	
(Ļ	2)	

Table S1 Synthetic parameters for MnO_x samples.

<u> </u>	NH ₃ ·H ₂ O Concentration	Time	Temperature	
Surring	(mol L ⁻¹)	(h)	(°C)	
strong	0.5	12	120	
strong	0.5	12	140	
strong	0.5	12	160	
strong	2	12	160	
strong	4	1	160	
strong	4	12	160	
strong	4	24	160	
strong	4	48	160	
weak	4	48	160	
strong	4	48	180	
strong	4	48	140	
strong	4	48	120	

1 Material characterization

The as-synthesized samples were characterized with power X-ray diffraction 2 (XRD) on a Rigaku X-2500 diffractometer using Cu K α radiation at a scanning 3 speed of 4° min⁻¹ from 10° to 80°, scanning electron microscopy (SEM, JEOL 4 JSM-7500F), transmission electron microscopy (TEM, Philips Tecnai F20), X-5 ray photoelectron spectroscopy (XPS, Perkin Elmer PHI 1600 ESCA system), 6 and N₂ adsorption/desorption measurement (BEL Sorp mini). Electrical 7 conductivity measurements were conducted by pressing the materials into chips 8 between two stainless steel electrodes and measuring the resistance of the 9 respective sample by ohm's law on Ametek Parstat 4000. The conductivity κ was 10 calculated using the equation: $\kappa = 1/\rho = h/(R*S)$, where ρ is resistivity, S and h 11 are the surface area and thickness of the chips, respectivity. 12

13 Electrode preparation

14 The samples (3 mg) were mixed with carbon powders (7 mg, Carbon Vulcan XC-15 72), isopropanol (950 μ L), Nafion (50 μ L, 5 wt.%, Sigma-Aldrich). The carbon 16 powders were used to improve the electronic conductivity. The ratio between 17 manganese oxides and Vc-72 is 3:7. Then, this mixture was ultrasonicated for 30 18 min to make a homogenous ink. Finally, 7 μ L of the obtained suspension was 19 loaded on a glassy carbon electrode (GCE, 5.61 mm, diameter) and dried for 8 h 20 under isopropanol atmosphere at room temperature. The electrochemical performance was compared with carbon-supported Pt nanoparticles (Pt/C, the Pt
 loading is around 20 wt%).

3 Electrochemical tests

A standard three-electrode cell was used to test the electrochemical performance at Λ room temperature. Saturated calomel electrode (SCE) and Pt foil were served as the 5 reference electrode and counter electrode, respectively. The working electrode was GCE 6 covered with a thin catalyst film. The following tests were conducted in 0.1 M aqueous 7 KOH electrolyte saturated with high-purity O2 or Ar and maintained under O2 or Ar 8 atmosphere during the test. The voltammetry was obtained at a potential scanning rate 9 of 20 mV s⁻¹. The ORR polarization curves were collected using the catalyst-loaded 10 rotation ring-disk electrode (RRDE) at different rotation rates and at a scan rate of 5 mV 11 s⁻¹. Unless stated, all potentials in this paper are reported against RHE, E(RHE) =12 E(SCE) + 0.99 V.^{S1} Based on LSV, the onset potential of ORR is determined by the 13 point, where the current density for ORR is first observed (i.e., the current density falls 14 below 0 mA cm⁻²). The half-wave potential is the potential where the current halves the 15 limiting current. 16

¹⁷ The overall electron transfer number can be calculated from the slope of Koutecky-¹⁸ Levich (K-L) plots (i^{-1} vs. $\omega^{-1/2}$) based on the K-L equation:

19
$$\frac{1}{i} = \frac{1}{i_k} + \frac{1}{i_d} = \frac{1}{nFAKC^0} - \frac{1}{0.62nFAD_{o_2}^{2/3}v^{-1/6}C^0\omega^{1/2}}$$
 (1)

where *i* is the measured current density, i_k and i_d are the kinetic current and limiting current densities, ω is the angular velocity of the disk ($\omega = 2\pi N$, *N* is the rotation speed), *n* is the total number of electrons transferred in the ORR, *F* is the Faraday constant (*F* = 96500 C mol⁻¹), A is the geometric electrode area (cm²), *K* is the rate constant of the reaction, C⁰ is the saturated O₂ concentration in the electrolyte, D_{O2} is the diffusion coefficient of O₂, and *v* is the kinematic viscosity of the electrolyte. *i*_k is obtained from mass-diffusion correction according to the following equation:

$$8 \quad i_k = \frac{i \times i_d}{i_d - i} \tag{2}$$

9 The electron transfer number (n) and the percentage of peroxide species relative to the 10 total product (y) can be calculated through the following equation:

11
$$n = \frac{4Ni_d}{Ni_d + i_r}$$
(3)

$$12 \quad y = \frac{200i_r}{Ni_d + i_r} \tag{4}$$

where N is the current efficiency of RRDE, and i_d and i_r are the disk and ring currents,
respectively.

 $_2$ Fig. S1 SEM images of (a) MnO₂ bulk and (b-d) the intermediate MnO_x NWs at

 $_3$ different temperature: (b) 120 °C, (c) 140 °C, and (d) 160 °C. $\rm NH_3\cdot H_2O$ concentrations

4 0.5 M, reaction time 12 h.

⁶ Fig. S2 SEM images of (a) MnO_2 bulk and (b-d) the intermediate MnO_x NWs at 7 different $NH_3 \cdot H_2O$ concentrations: 0.5, 2, and 4 M. Temperature 160 °C, reaction time 8 12 h.

² Fig. S3 SEM images of the intermediate MnO_x NWs synthesized with different reaction

- $_{3}$ time: (a) 1, (b) 12, (c) 24, (d) 48 h. Temperature 160 °C, $\rm NH_3\cdot H_2O$ concentration 4 M.
- 4

Fig. S4 SEM images of the intermediate MnO_x NWs at different temperature: (a) 120 °C,
(b) 140 °C, (c) 160 °C, and (d) 180 °C. NH₃·H₂O concentrations 4 M, reaction time 48 h.

³ Fig. S5 SEM images of the intermediate MnO_x NWs obtained under (a) weak stirring ⁴ and (b) strong stirring. Temperature 160 °C, NH₃·H₂O concentrations 4 M, reaction ⁵ time 48 h.

Fig. S6 SEM images of the intermediate MnO_x NRs synthesized without stirring at
different reaction time: (a) 1, (b) 12, (c) 24, and (d) 48 h. Temperature 160 °C,
NH₃·H₂O concentration 4 M.

2 Fig. S7 TG curve of the as-synthesized intermediate MnO_x NWs in air at a heating rate

1

6 Fig. S8 XPS survey scan spectra of (a) MnO_2 bulk, (b) MnO_x NWs, and (c) α-MnO₂ 7 NWs.

2 Fig. S9 LSVs of (a) Vc-72, (b) MnO₂ bulk, (c) MnO_x NWs, (d) α-MnO₂ NWs, (e)

Fig. S10 (a) The polarization curves with (dotted line) and without iR-correction (solid
line) of MnO₂ bulk MnO_x NWs, α-MnO₂ NRs, and α-MnO₂ NWs recorded at 1600
rpm in O₂-saturated 0.1 M KOH solution. (b) EIS spectroscopies of MnO₂ bulk, MnO_x
NWs, α-MnO₂ NRs, and α-MnO₂ NWs.

8 Fig. S11 K-L plots of different samples at 0.45 V.

Fig. S12 Chronoamperometric curves of MnO₂ bulk, MnO₂ NWs, and Pt/C (a) in
alkaline media; (b) after the introduction of 2.5 ml methanol into 200 ml of 0.1 M
KOH solution.

Fig. S13 The comparsion of electrochemical performance between α-MnO₂ NWs and α-MnO₂ NWs+Vc-72.

2 Fig. S14 The comparsion of electrochemical performance between among different

 $_3$ loading of α -MnO₂ NWs containing Vc-72.

Table S2 Some recently reported α-MnO₂ NWs as ORR catalysts^a

Samples	E _{onset} (V)	E _{half} (V)	i_k (mA cm ⁻²)	$I_m (\text{mA mg}^{-1})$	Ref
α-MnO ₂ NWs	0.94	0.72	9.42	62.60	This work
α-MnO ₂ nanorods	0.89	0.71	6.00	14.72	8c
α-MnO ₂ nanotubes	0.89	0.70	3.00	14.72	8c
Ni-α-MnO2 NWs/graphene	0.91	0.74	3.08	22.08	17b
Cu-α-MnO ₂ NWs/graphene	0.95	0.74	4.00	23.56	17b
Cu-a-MnO ₂ NWs	0.85	0.71	2.40	11.88	17e
MnO ₂ nanorods with vacancies	0.86	0.72	9.48	72.60	19a
α-MnO ₂ nanoparticles	0.71	0.57	0.11	22.19	30a
Long belt-like α- MnO ₂	0.92	0.75	16	52.35	30b
α-MnO ₂ NWs	0.89	0.64	1.93	28.57	30c

2 ^a E_{onset} , E_{half} , i_k , I_m , and n represent onset potential, half-wave potential, kinetic 3 current density, mass activity and electron transfer number, respectively. The 4 values of I_m and n are determined at 0.45 V. i_k is determined at 0.7 V.

 $_{2}$ Fig. S15 N₂ sorption isotherms (measured at 77 K) of the as-synthesized materials.

 $_{\rm 2}\,$ Fig. S16 CV curves with different scan rates between 290 and 390 mV for (a) $\rm MnO_2$

 $_3$ bulk, (b) MnO_x NWs, (c) α -MnO₂ NRs, and (d) α -MnO₂ NWs.

4

Fig. S17 Dependence of current as a function of scan rate at measured potential of 340
mV.

The electrochemical surface area (ECSA) was calculated from the Coulombic charge Q
for hydrogen desorption based on the equation:^{S2}

$$3 \quad ECSA = \frac{Q}{m \times C} \tag{5}$$

where Q = S/v (S peak area, v scan rate). The ECSA of manganese oxides was 4 estimated adopting an in stiu method on the basis of the measuement of double layer 5 capacitance. In Ar, we found that the electrochemical response in the region of 0.29-6 0.39 V was dominated by the double layer capacitance without significant faradaic 7 processes. The approximately rectangular shape of the cyclic voltammograms between 8 0.29 and 0.39 V and the linear relation between the current and the scan rate confirmed 9 the absence of the faradaic processes. The ECSA was determined assuming a C_{dl} 10 capacitance of 60 µF cm⁻².^{S3} The obtained ECSA of MnO₂ bulk, MnO_x NWs, MnO₂ 11 NRs, and MnO₂ NWs was 54.7, 60.6, 63.5, and 74.3 m^2/g , respectively. 12

13 Reference:

- S1 (a) Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. J. Dai, *Nat. Mater.*, 2011, 10, 780. (b) X. Han, T. Zhang, J. Du, F. Cheng and J. Chen, *Chem. Sci.*, 2013, 4, 368.
- S2 T. J. Schimdt, H. A. Gasteiger, G. D. Stab, P. M. Urban, D. M. Kolb and R. J. Behm, *J. Electrochem. Soc.*, 1998, 145, 2354.
- 19 S3 S. Levine, A. L. Smith, Discuss. Faraday Soc., 1971, 52, 290.