Electronic Supplementary Information

Shrimp-shell derived carbon nanodots as precursor to fabricate Fe, N-doped porous graphitic carbon electrocatalyst for efficient oxygen reduction and zinc-air battery

Xian Zhang^{a,b}, Rongrong Liu^{a,b}, Yipeng Zang^{a,b}, Guoqiang Liu^{a,b}, Shengwen Liu,^a

Guozhong Wang^a, Yunxia Zhang^a, Haimin Zhang^{a,*}, Huijun Zhao^{a,c}

^a Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China. E-mail: zhanghm@issp.ac.cn; Fax: +86 (0)551 65591434; Tel: +86 (0)551 65591973 ^b University of Science and Technology of China, Hefei 230026, China.

^c Centre for Clean Environment and Energy, Griffith University, Gold Coast Campus, QLD 4222, Australia.

Samples	C (at.%)	N (at.%)	O (at.%)	Fe (at.%)
Fe-N-PGC-600	83.2	8.15	7.98	0.17
Fe-N-PGC-700	85.63	6.33	6.34	0.32
Fe-N-PGC-800	87.73	4.95	6.96	0.36
Fe-N-PGC-900	89.74	2.59	6.34	1.33

Table S1 The chemical compositions of Fe-N-PGC-600, Fe-N-PGC-700, Fe-N-PGC-800 and Fe-N-PGC-900 obtained by XPS.

Table S2 Surface area and total pore volume data of Fe-N-PGC-600, Fe-N-PGC-700,

	BET surface area	Pore volume	
Samples	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	
Fe-N-PGC-600	677.3	0.198	
Fe-N-PGC-700	786.8	0.203	
Fe-N-PGC-800	806.7	0.205	
Fe-N-PGC-900	837.7	0.242	

Fe-N-PGC-800 and Fe-N-PGC-900 obtained by $N_{\rm 2}$ adsorption-desorption isotherms.

Fig. S1 Surface survey XPS spectra of shrimp-shell derived N-doped carbon nanodots.

Fig. S2 XRD patterns of Fe-N-PGC samples fabricated at different pyrolysis temperatures without acid leaching process.

Fig. S3 SEM images of (a) Fe-N-PGC-600, (b) Fe-N-PGC-700, (c) Fe-N-PGC-800 and (d) Fe-N-PGC-900.

Fig. S4 Surface survey XPS spectra of Fe-N-PGC-800.

Fig. S5 High resolution C 1s XPS spectrum of Fe-N-PGC-800.

Fig. S6 (a) N_2 adsorption-desorption isotherms of Fe-N-PGC-600, Fe-N-PGC-700 and Fe-N-PGC-900, and (b) corresponding pore size distribution curves.

Fig. S7 Linear sweep voltammogram (LSV) curves of Fe-N-PGC-600, Fe-N-PGC-700, Fe-N-PGC-800 and Fe-N-PGC-900 in O_2 -saturated 0.1 M KOH solution at a scan rate of 10 mV s⁻¹ and a rotation rate of 1600 rpm.

Fig. S8 Linear sweep voltammogram (LSV) curves at different rotation rates, corresponding K-L plots and electron transfer numbers (n) of (a) commercial Pt/C, (b) Fe-N-PGC-600, (c) Fe-N-PGC-700 and (d) Fe-N-PGC-900. The electrolyte is O₂-saturated 0.1 M KOH solution and the scan rate is 10 mV s⁻¹.