Electronic Supplementary Information (ESI)

Enhanced oxygen evolution reaction of metallic nickel phosphide nanosheets by surface modification

Zejun Li^a, Xinyu Dou^b, Yingcheng Zhao^a and Changzheng Wu*a

^aHefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Hefei Science Center (CAS), and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026 P. R. China.

^bCollege of Chemistry, Jilin University, Changchun, 130012, China.

E-mail: czwu@ustc.edu.cn

Figure S1. SEM images of the Ni(OH)₂ precursor and oxygen-incorporated Ni_2P production.

Figure S2. XRD pattern of the pure Ni₂P sample.

Figure S3. The high resolution XPS spectra of P 2p core level of the obtained oxygenincorporated Ni₂P nanosheets. The two peaks located at 129.65 eV and 130.25 eV was corresponding to P $2p_{3/2}$ and P $2p_{1/2}$, respectively^[S1]. Another peak at 134 eV was probably due to the partial oxidation of Ni₂P on the surface.

Figure S4. Temperature-dependent resistance of the pure Ni_2P sample. The resistance of the pure Ni_2P sample increased with temperature ranging from 50K to 300K, behaving metallic characteristic.

Temperature-dependent resistance measurements:

The temperature-dependent resistance of Ni_2P samples was measured using a Keithley 4200-SCS semiconductor characterization system. Typically, the obtained Ni_2P

samples were first pressed into pellets. Then the copper wires were connected to the Ni_2P pellets with silver paste. And the temperature-dependent resistance data were recorded from the Keithley 4200-SCS. The measured temperature range was from 50 K to 300 K.

Catalyst	Electrolyte	Current density (j, mA/cm ²)	Overpotentia l at the correspondin g j (mV)	Tafel slope(mV/de c)	Mass loading (mg /cm ²)	Reference
CoMnP	1 М КОН	10	330	61	0.284	J. Am. Chem. Soc., 2016, 138, 4006-4009.
СоР	1 М КОН	10	320	71	0.71	ACS Catal., 2015, 5, 6874 - 6878.
CoP hollow polyhedron	1 М КОН	10	400	57	0.102	ACS Appl. Mater. Interfaces, 2016, 8, 2158 - 2165
Ni-P	1 М КОН	10	300	64	0.2	Energy Environ. Sci., 2016, doi: 10.1039/C6EE00100 A
NiCoP/Ti	1 М КОН	10	310	52	0.75	Adv. Mater. Interfaces. 2015, doi: 10.1002/admi.201500 454
Mn ₃ O ₄ / CoSe ₂	0.1 M KOH	10	450	49	0.2	J. Am. Chem. Soc. 2012, 134, 2930
Co ₃ O ₄ / N-rmGO	1 М КОН	10	310	67	1	Nat. Mater. 2011, 10, 780.
Au@Co ₃ O ₄	0.1 M KOH	2.84	350	60	0.064	Adv. Mater. 2014, 26, 3950
Ni-doped Co ₃ O ₄	0.1 M NaOH	10	530	62	0.14	Chem. Commun. 2013, 49, 7522.
oxygen- incorporated Ni ₂ P	0.1 M KOH	10	347	63	0.285	This work

Table S1. Comparison of OER performance in alkaline media for the current oxygenincorporated Ni_2P with other OER electrocatalysts.

Reference

S1. Z. Pu, Q. Liu, C. Tang, A. M. Asiri, X. Sun, Nanoscale 2014, 6, 11031-11034.