Supplemental Information

Strategically designed porous magnetic Fe/Fe₃C@C matrix and its highly efficient uranium(VI) remediation

Tao Wen,^a Xiangxue Wang,^a Jian Wang,^a Zhongshan Chen,^a Jiaxing Li,^{a,b} Jun Hu,^{a,b}

Tasawar Hayat,^{b,c} Ahmed Alsaedi,^c Bernd Grambow^d and Xiangke Wang*a,^{b,e}

^aSchool of Environment and Chemical Engineering, North China Electric Power

University, Beijing 102206, P.R. China

^bNAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah

21589, Saudi Arabia

^cDepartment of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan

^dLaboratory SUBATECH, UMR Ecole des Mines/CNRS/Universite, 4 rue A. Kastler,

BP 20722, 44307, Nantes cedex 03, France

^eCollaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, P.R. China

Corresponding author. Fax: +86-10-61772890; Tel: +86-10-61772890.

*E-mail address: <u>xkwang@ncepu.edu.cn</u> (X.K.W.)

Fig. S1 TEM image and XRD pattern of N-doped Fe/Fe₃C@C sample after acid leaching.

Fig. S2 FTIR spectra of N-doped Fe/Fe₃C@C products at different temperatures.

Fig. S3 Linear fit of using a Langmuir-Hinshelwood kinetic model at different initial U(VI) concentrations. All batch experiments were conducted in m/V = 0.1 g L⁻¹, pH = $6.0, 0.1 \text{ mM Na}_2\text{CO}_3$, and T = 298 K.

Table S1. Comparison of sorption capacities of U(VI) on N-doped Fe/Fe₃C@C atdifferent temperatures with other different adsorbents.

Adsorbents	Conditions	$Q_{\rm max}({\rm mg g}^{-1})$	References
Activated carbon	pH 3.0, T = 293 K	293 K 28.3 1	
Manganese oxide	pH 4.0, T = 293 K	15.1	2
coated zeolite			
Ulva spNa bentonite	pH 3.0, T = 303 K	54.0	3
Magnetite nanoparticles	pH 7.0, T = 293 K	5.0	4
Graphene oxide	pH 5.0, T = 293 K	31.3	5
N-doped Fe/Fe ₃ C@C-	pH 6.0, T = 293 K	155	This work
600			
N-doped Fe/Fe ₃ C@C-	pH 6.0, T = 293 K	169	This work
700			
N-doped Fe/Fe ₃ C@C-	pH 6.0, T = 293 K	203	This work

800			
N-doped Fe/Fe ₃ C@C-	pH 6.0, T = 293 K	190	This work
900			

Table S2. Kinetic parameters of U(VI) removal on N-doped Fe/Fe₃C@C-800.

Fitted equation	$k_{\rm r} ({\rm mg} {\rm L}^{-1}{\rm min}^{-1})$	<i>K</i> (L mg ⁻¹)	R^2
$\frac{1}{r_0} = 5.312 \frac{1}{C_0} + 0.0709$	14.108	0.0133	0.999

 Table S3. Components of contaminated groundwater.

Components	CaCO ₃	CaSO ₄	$Ca(NO_3)_2$	K_2SO_4	Na ₂ CO ₃	MgCO ₃	рΗ
Concentration	0.245	0.122	0.041	0.017	0.212	0.092	6.8
(mg L ⁻¹)							
	100-						
,	80-						
	60						
Í							
	20-						
	0 Simulated water		ater	Groundy	vater		

Fig. S4 The removal efficiency of U(VI) by N-doped Fe/Fe₃C@C-800 in simulated water (m/V = 0.1 g L⁻¹, pH = 6.0, I = 0.1 mM Na₂CO₃, T = 25 °C) and contaminated groundwater (m/V = 0.1 g L⁻¹, pH = 6.8, T = 25 °C).

Fig. S5 The linear plots of $\ln K_d$ vs. C_e for U(VI) removal on N-doped Fe/Fe₃C@C-800 at three different temperatures, m/V = 0.1 g L⁻¹, pH =6.0, and I = 0.1 mM Na₂CO₃.

Experimental	Langmuir				Freund	llich
conditions	$Q_{\rm max}({ m mg g}^{-1})$	b (L mg-	¹) R^2	k	n	R^2
T = 5 °C	167	0.102	0.996	56.85	5.02	0.961
$T = 25 {}^{\circ}\mathrm{C}$	203	0.075	0.990	61.40	4.58	0.962
$T = 45 {}^{\circ}\mathrm{C}$	240	0.059	0.992	64.93	4.26	0.974

Table S4. Parameters for Langmuir and Freundlich isotherm models of U(VI) removal on N-doped Fe/Fe₃C@C-800 at three different temperatures.

Fig. S6 Raman spectra of N-doped Fe/Fe₃C@C-800 before and after U(VI) reaction at

pH = 4.0, 6.0, and 8.0.

Fig. S7 XPS survey of N-doped Fe/Fe₃C@C-800 before and after U(VI) reaction at pH = 4.0, 6.0, and 8.0.

Fig. S8 High resolution N 1s XPS spectrum of N-doped Fe/Fe₃C@C-800.

References

- A. Mellah, S. Chegrouche and M. Barkat, J. Colloid. Interf. Sci., 2006, 296, 434-441.
- R. P. Han, W. H. Zou, Y. Wang, L. Zhu, <u>J. Environ. Radioactiv.</u>, 2007, 93, 127-143.
- 3. R. Donat, S. Aytas, J. Radioanal. Nucl. Chem., 2005, 265, 107-114.
- D. Das, M. K. Sureshkumar, S. Koley, N. Mithal, C. G. S. Pillai, *J. Radioanal.* Nucl. Chem., 2010, 285, 447-454.
- A. Y. Romanchuk, A. S. Slesarev, S. N. Kalmykov, D. V. Kosynkin and J. M. Tour, Phys. Chem. Chem. Phys., 2013, 15, 2321-2327.