Electronic Supplementary Information (ESI)

Macroscopic Porous MnO₂ Aerogels for Supercapacitor Electrodes

Kongliang Xu,^a[†] Xuedong Zhu,^b[†] Ping She,^a Yinxing Shang,^a Hang Sun^{*a} and Zhenning Liu^{*a}

^{*a*} Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, P. R. China.

E-mail: sunhang@jlu.edu.cn; liu_zhenning@jlu.edu.cn

^b College of Life Sciences, Jilin University, Changchun, Jilin 130022, P. R. China.

[†] These authors contributed equally to the work.

1. Experimental Section

1.1 Synthesis of the ultrathin MnO₂ nanosheets

KMnO₄ (A.R., Beijing Chemical Factory), sodium dodecyl sulfate (SDS, C.P., Tianjin Guangfu Fine Chemical Research Institute), concentrated hydrochloric acid (HCl, A.R., Beijing chemical factory) were purchased and directly used without further treatment or purification. Ultrathin MnO₂ nanosheets were prepared through the redox reaction between KMnO₄ and SDS. Briefly, SDS solution (100 mM, 32 mL), HCl solution (100 mM, 3.2 mL), KMnO₄ solution (50 mM, 3.2 mL) and 281.6 mL ultrapure water were mixed together and heated at 95 °C for 3 hours to form a brown flocculent precipitate. The precipitates were filtered and washed with ultrapure water and alcohol for multiple times, and then sonicated at 100 W to yield a colloidal solution of monodispersed ultrathin MnO₂ nanosheets.

1.2 Preparation of the self-standing MnO₂ aerogels

Self-standing MnO₂ aerogels were prepared by assembling the ultrathin MnO₂ nanosheets into 3D interconnected architectures via ice-templating and subsequent freeze-drying. Briefly, MnO₂ nanosheet colloids with a concentration of \sim 1 mg mL⁻¹ were poured into a glass mold, which were then frozen at -20 °C for 12 hours to form icy chunks. Subsequently, the obtained frozen samples were directly transferred to a freeze-drier and freeze-dried at -50 °C for 24

hours to prepare self-standing MnO_2 aerogels. For comparison, the powder MnO_2 was prepared by directly drying of MnO_2 colloids at 90 °C.

1.3 Electrode preparation and electrochemical measurement

A three-electrode system with 1 M Na₂SO₄ aqueous solution as the electrolyte was set up to characterize the properties of the MnO₂ aerogels, where a platinum wire and the AgCl/Ag electrode (saturated with KCl) were used as the counter electrode and reference electrode, respectively. The working electrode was prepared by mixing 70 wt% active material (MnO₂ aerogels), 20 wt% acetylene black and 10 wt% polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone (NMP) and the slurry was daubed onto a nickel foam current collector (5 mm × 5 mm). The electrode was heated at 110 °C for 12 h to evaporate the solvent and then pressed under 10 MPa. The typical mass of the active material (MnO₂ aerogels alone) in the working electrodes was about 4 mg cm⁻². The control electrochemical measurement was carried out under the same condition using powder MnO₂ instead of MnO₂ aerogels.

The specific capacitance of the electrode is calculated from the cyclic voltammetry curve using the following equation:

$$C = (\int I_{dt}) / (m \Delta V),$$

where C (F g⁻¹) is the specific capacitance, I (A) is the oxidation or reduction current, dt (s) is the time differential, m (g) is the mass of the active material, and ΔV (V) is the voltage of one sweep segment.

The specific capacitance of the electrode is also calculated from the galvanostatic discharge curve using the following equation:

$$C = (I \Delta t) / (m \Delta V),$$

where C (F g⁻¹) is the specific capacitance, I (A) is the constant discharge current, Δt (s) is the the discharge time, m (g) is the mass of active material in the electrode, and ΔV (V) is the potential window.

2. Figures

Fig. S1 Characterization of MnO₂ nanosheets: a) UV-vis absorption spectrum; b) TEM image; c) SEM image; d) AFM image and the height profile along the black line (the height measured between two red arrows is approximately 2.2 nm).

Fig. S2 a) SEM image of the obtained MnO₂ aerogel; b) SEM image of the MnO₂ aerogel at higher magnification; c) TEM image of the MnO₂ aerogel; d) HR-TEM image of the MnO₂ aerogel showing that the obtained MnO₂ aerogels are polycrystalline and the *d*-spacing of 0.28 nm revealed by lattice fringes corresponds to the *d*-value of the (110) plane of δ -MnO₂.

Fig. S3 a) FT-IR spectrum of the MnO₂ aerogels. The band at 517 cm⁻¹ can be assigned to the vibrations of octahedral [MnO₆] framework. b) TGA curve of the MnO₂ aerogels. The weight loss before 499 °C can be attributed to the loss of surface and interlayer water, whereas the weight losses from 499 °C to 532 °C and 958 °C to 989 °C are probably caused by the transformations of MnO₂ to Mn₂O₃ and Mn₂O₃ to Mn₃O₄ respectively. c) XPS spectrum of the MnO₂ aerogels. The two peaks in the red box, centered at 642.0 eV and 653.9 eV, correspond to Mn_{2p3/2} and Mn_{2p1/2} of MnO₂ respectively. d) XRD profile of the MnO₂ aerogels exhibiting four peaks at 2 θ =12.1°, 24.2°, 36.7°, 66.0°, which are in line with the characteristic peaks of δ -MnO₂ (JCPDS No. 18-0802).

Fig. S4 a) Comparison of specific capacitance between $A-MnO_2$ and $P-MnO_2$ at various scan rates; b) comparison of capacitance retention (normalized to the capacitance at 1 A g⁻¹) between $A-MnO_2$ and $P-MnO_2$ at different scan rates.

Fig. S5 Galvanostatic charge/discharge curves of P-MnO₂ at different current densities.

Fig. S6 Fitted Nyquist plots for A-MnO₂ (black lines) and P-MnO₂ (red lines) electrodes. (b) is the enlargement of (a) in the high frequency.

Fig. S7 SEM image of the MnO_2 aerogel electrode after being pressed at 10 MPa.

Morphology	SC (F g ⁻¹)	Rate capability	Cycling durability	Reference
MnO ₂ nanosheets	1017 (3 mV s ⁻¹)	24% (3 to 50 mV s ⁻¹)	Unmentioned	1
MnO ₂ nanosheets	868 (3 A g ⁻¹)	Unmenntioned	91% (10000 cycles)	2
MnO ₂ nanosheet clusters	521.5 (5 mV s ⁻¹)	8% (5 to 50 mV s ⁻¹)	120% (1000 cycles)	3
MnO ₂ nanolamellas	149.7 (2 A g ⁻¹)	72.6% (0.15 to 2 A $g^{\text{-1}}$)	90% (3000 cycles)	4
MnO ₂ nanowire array	493 (4 A g ⁻¹)	17 % (4 to 20 A g ⁻¹)	97.3% (800 cycles)	5
MnO ₂ nanowire network	279 (1 A g ⁻¹)	54.5 % (1 to 20 A g ⁻¹)	97.3% (1000 cycles)	6
MnO ₂ nanorods	120 (5 mV s ⁻¹)	57% (1 to 100 mV s ⁻¹)	Unmentioned	7
MnO ₂ nanowires	108 (0.77 A g ⁻¹)	$60\% (0.077 \text{ to } 0.77 \text{ A g}^{-1})$	88% (3000 cycles)	8
Porous MnO ₂	218 (0.1 A g ⁻¹)	70.6 % (0.1 to 15 A g ⁻¹)	90% (4000 cycles)	9
MnO ₂ nanoflowers	121.5 (1 mV s-1)	Unmentioned	71% (500 cycles)	10
Clewlike MnO ₂	120 (5 mV s ⁻¹)	70% (5 to 200 mV s ⁻¹)	Unmentioned	11
MnO ₂ nanoflowers	103.5 (0.5 A g ⁻¹)	64 % (0.5 to 10 A g ⁻¹)	120% (5000 cycles)	12
MnO ₂ /Carbon Aerogels	456 (5 mV s ⁻¹)	64 % (1 to 40 mV s ⁻¹)	97% (1000 cycles)	13
MnO ₂ -graphene aerogels	128 (2 A g ⁻¹)	47 % (0.5 to 6 A g^{-1})	99% (800 cycles)	14
MnO ₂ carbonaceous aerogels	123.5 (5 mV s ⁻¹)	48 % (5 to 100 mV s ⁻¹)	60% (1000 cycles)	15
MnO ₂ -dispersed carbon aerogels	78 (5 mA.cm ⁻²)	Unmentioned	Unmentioned	16
MnO ₂ aerogels	139 (1 A g ⁻¹)	72.7 % (1 to 20 A g ⁻¹)	93.3% (5000 cycles)	Our work

Table S1. Supercapacitive propertie	of MnO ₂ based elec	ctrodes reported in re	ecent literature
-------------------------------------	--------------------------------	------------------------	------------------

Notes and references

- G. X. Zhao, J. X. Li, L. Jiang, H. L. Dong, X. K. Wang and W. P. Hu, *Chem. Sci.*, 2012, 3, 433-437.
- 2. Z. Liu, K. Xu, H. Sun and S. Yin, *Small*, 2015, **11**, 2182-2191.
- 3. Z. P. Feng, G. R. Li, J. H. Zhong, Z. L. Wang, Y. N. Ou and Y. X. Tong, *Electrochem. Commun.*, 2009, **11**, 706-710.
- 4. S. Chen, J. W. Zhu and X. Wang, ACS Nano, 2010, 4, 6212-6218.
- 5. C. L. Xu, Y. Q. Zhao, G. W. Yang, F. S. Li and H. L. Li, *Chem. Commun.*, 2009, 7575-7577.
- 6. H. Jiang, T. Zhao, J. Ma, C. Y. Yan and C. Z. Li, Chem. Commun., 2011, 47, 1264-1266.
- 7. K. Kuratani, K. Tatsumi and N. Kuriyama, Cryst. Growth Des., 2007, 7, 1375-1377.
- 8. S. L. Chou, J. Z. Wang, S. Y. Chew, H. K. Liu and S. X. Dou, *Electrochem. Commun.*, 2008, **10**, 1724-1727.
- X. Y. Xie, C. Zhang, M. B. Wu, Y. Tao, W. Lv and Q. H. Yang, *Chem. Commun.*, 2013, 49, 11092-11094.
- 10. J. P. Ni, W. C. Lu, L. M. Zhang, B. H. Yue, X. F. Shang and Y. Lv, *J Phys. Chem. C*, 2009, **113**, 54-60.
- 11. P. Yu, X. Zhang, D. L. Wang, L. Wang and Y. W. Ma, *Cryst. Growth Des.*, 2009, **9**, 528-533.
- 12. W. Chen, R. B. Rakhi, Q. Wang, M. N. Hedhili and H. N. Alshareef, *Adv. Funct. Mater.*, 2014, **24**, 3130-3143.
- 13. G. R. Li, Z. P. Feng, Y. N. Ou, D. C. Wu, R. W. Fu and Y. X. Tong, *Langmuir*, 2010, **26**, 2209-2213.
- C. C. Ji, M. W. Xu, S. J. Bao, Z. J. Lu, C. J. Cai, H. Chai, R. Y. Wang, F. Yang and H. Wei, *New J. Chem.*, 2013, 37, 4199-4205.
- 15. Y. M. Ren, Q. Xu, J. M. Zhang, H. X. Yang, B. Wang, D. Y. Yang, J. H. Hu and Z. M. Liu, *ACS Appl. Mater. Inter.*, 2014, **6**, 9689-9697.
- 16. G. Lv, D. C. Wu and R. W. Fu, J. Non-Cryst. Solids, 2009, 355, 2461-2465.