Supporting Information

Manganese Protoporphyrin IX Reconstituted Myoglobin

Capable of Epoxidation of C=C Bond with Oxone[®]

Yuan-Bo Cai,^a Si-Yu Yao,^a Mo Hu^b, Xiaoyun Liu^{*b}, and Jun-Long Zhang^{*a}

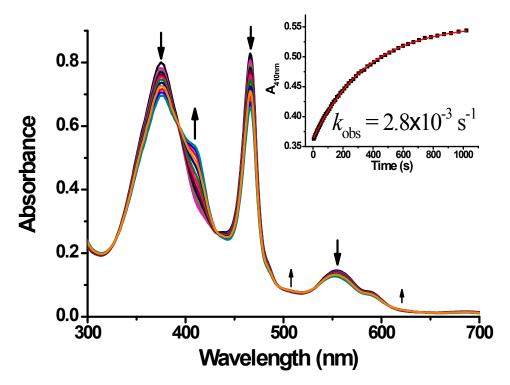
^a Beijing National Laboratory for Molecular Sciences, State Key

Laboratory of Rare Earth Materials Chemistry and Applications, College

of Chemistry and Molecular Engineering, Peking University, Beijing

100871, P. R. China.

Fax: (+86) 10-62767034


E-mail: zhangjunlong@pku.edu.cn

^b Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China Fax: (+86) 10-62759813

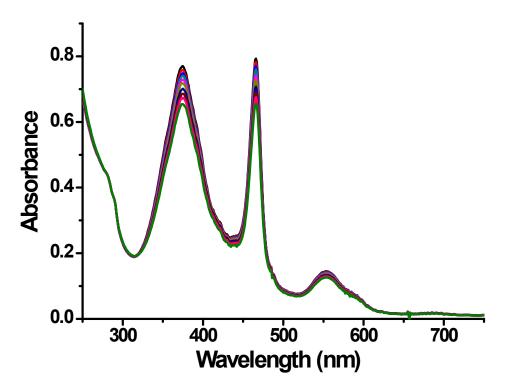

E-mail: xiaoyun.liu@pku.edu.cn

Table of Contents

1	Kinetic studies of His3 Mn ^{III} Mb reacted with 20 equiv KHSO ₅ 3
2.	Kinetic studies of F43H Mn ^{III} Mb reacted with 200 equiv KHSO ₅ 4
3.	Kinetic studies of L29H Mn ^{III}Mb reacted with 200 equiv KHSO $_5$ 5
4.	Kinetic studies of H64F Mn ^{III} Mb reacted with 200 equiv KHSO ₅ 6
5	Kinetic studies of F43H/H64F $Mn^{III}Mb$ reacted with 200 equiv KHSO ₅ 7
6	Kinetic studies of L29H/H64F Mn ^{III} Mb reacted with 200 equiv KHSO ₅ 8
7	Kinetic studies of L29H/F43H/H64F $Mn^{III}Mb$ reacted with 200 equiv KHSO ₅₉
8	ESI-MS of apo His3 Mb with 20 equiv KHSO ₅ 10
9	LC/MS peaks of oxidized/unoxidized peptide HPGDFGADAQGAMNK11
10	Fragmentation patterns of peptide HPGDFGADAQGAM(Ox)NK13
11	¹ H NMR of styrene epoxidation catalyzed by His3 Mn ^{III} Mb14
12	Conversion and yield of styrene epoxidation at different pHs15

Figure S1 Kinetic studies of 30 μ M His3 Mn^{III}Mb reacted with 20 equiv KHSO₅ in PBS buffer (pH=7.4). Inset: Time course plots of absorbance at 410 nm, and corresponding rate constants of Mn=O formation.

Figure S2 Kinetic studies of 30 μ M F43H Mn^{III}Mb reacted with 200 equiv KHSO₅ in PBS buffer (pH=7.4).

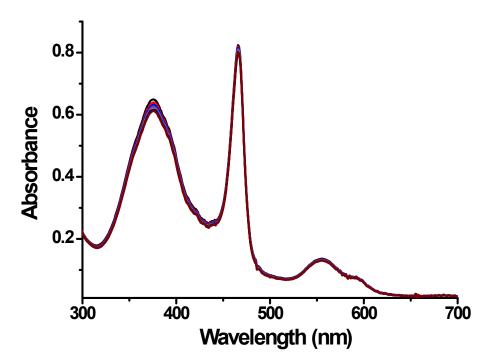
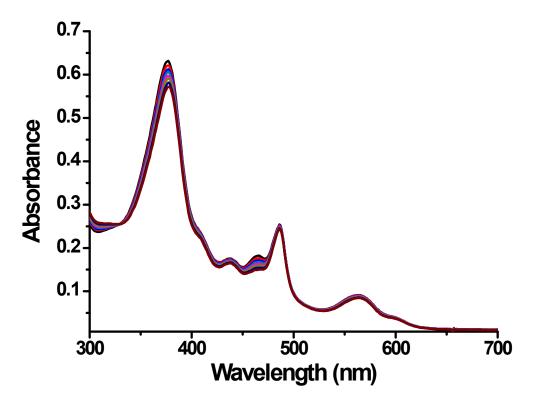



Figure S3 Kinetic studies of 30 μ M L29H Mn^{III}Mb reacted with 200 equiv KHSO₅ in PBS buffer (pH=7.4).

Figure S4 Kinetic studies of 30 μ M H64F Mn^{III}Mb reacted with 200 equiv KHSO₅ in PBS buffer (pH=7.4).

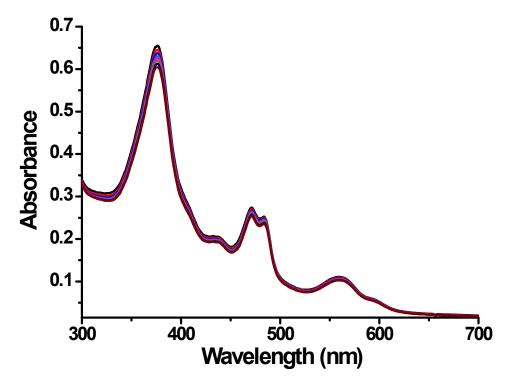


Figure S5 Kinetic studies of 30 μ M F43H/H64F Mn^{III}Mb reacted with 200 equiv KHSO₅ in PBS buffer (pH=7.4).

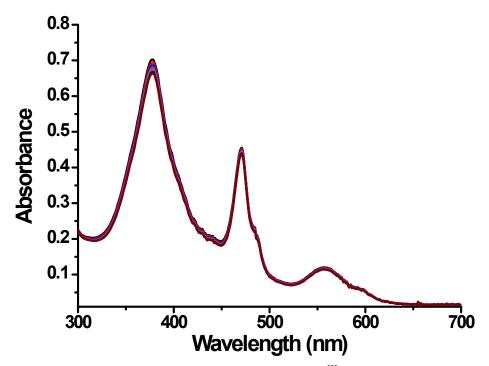


Figure S6 Kinetic studies of 30 μ M L29H/H64F Mn^{III}Mb reacted with 200 equiv KHSO₅ in PBS buffer (pH=7.4).

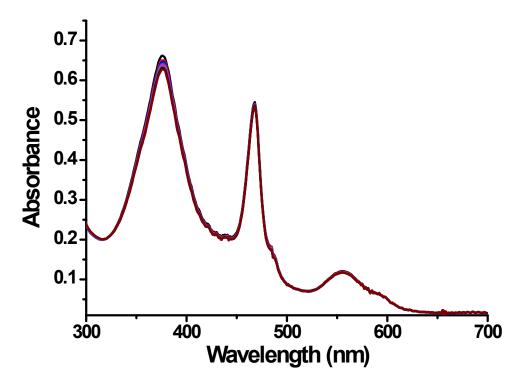
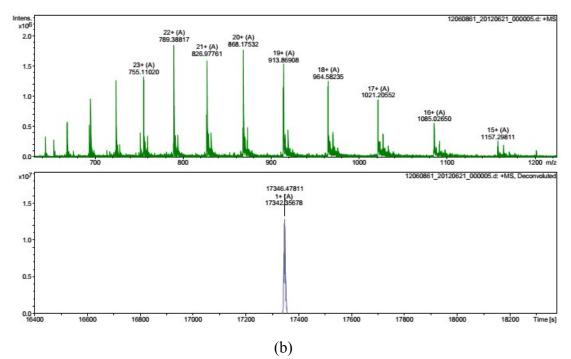
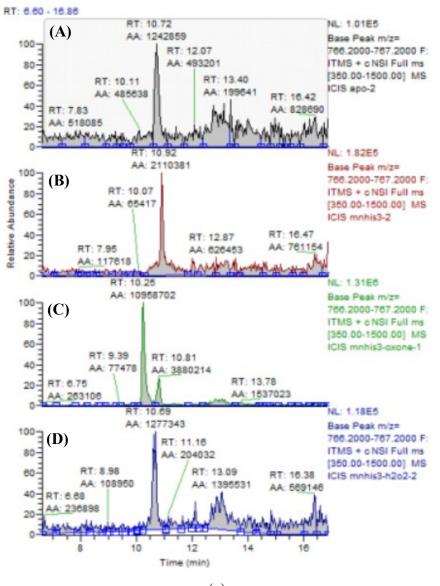
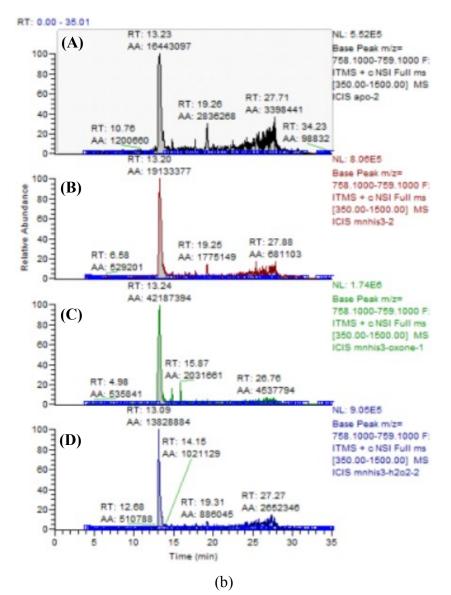
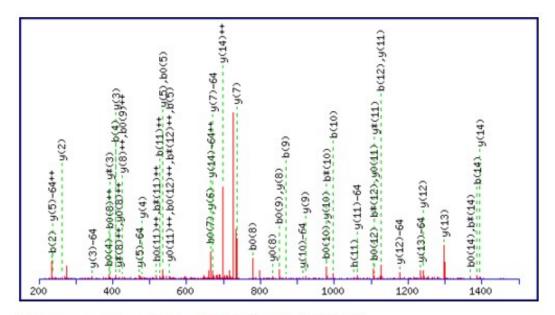


Figure S7 Kinetic studies of 30 μ M L29H/F43H/H64F Mn^{III}Mb reacted with 200 equiv KHSO₅ in PBS buffer (pH=7.4).


Figure S8 ESI-MS of apo His3 Mb with 20 equiv KHSO₅ after reacting for 3 min.

(a)

Figure S9. Retention times and peak areas of (a) oxidized and (b) unoxidized peptide HPGDFGADAQGAMNK in LC/MS. In each graph, A-D represent apo-His3 Mb with Oxone[®], His3 Mn^{III}Mb without any oxidants, His3 Mn^{III}Mb with Oxone[®], and His3 Mn^{III}Mb with H₂O₂, respectively.

Average mass of neutral peptide Mr(calc): 1531.6057 Variable modifications: M13 : Oxidation (M), with neutral losses 0.0000(shown in table), 64.1069 Ions Score: 112 Expect: 6.3e-012 Matches : 57/204 fragment ions using 74 most intense peaks (help)

#	b	b++	b*	b* ⁺⁺	b ⁰	b ⁰⁺⁺	Seq.	у	y++	y*	y***	y ⁰	y ⁰⁺⁺	#
1	138.1467	69.5770					H							15
2	235.2619	118.1346					Р	1395.4738	698.2406	1378.4433	689.7253	1377.4585	689.2329	14
3	292.3132	146.6603					G	1298.3586	649.6830	1281.3281	641.1677	1280.3433	640.6753	13
4	407.4006	204.2040			389.3853	195.1964	D	1241.3073	621.1573	1224.2768	612.6421	1223.2920	612.1497	12
5	554.5745	277.7909			536.5592	268.7833	F	1126.2199	563.6136	1109.1894	555.0984	1108.2046	554.6060	11
6	611.6258	306.3166			593.6105	297.3090	G	979.0460	490.0267	962.0155	481.5114	961.0307	481.0190	10
7	682.7037	341.8555			664.6884	332.8479	Α	921.9947	461.5010	904.9642	452.9858	903.9794	452.4934	9
8	797.7911	399.3992			779.7758	390.3916	D	850.9168	425.9621	833.8863	417.4468	832.9015	416.9544	8
9	868.8690	434.9382			850.8537	425.9306	Α	735.8294	368.4184	718.7989	359.9031			7
10	996.9982	499.0028	979.9677	490.4875	978.9829	489.9952	Q	664.7515	332.8794	647.7210	324.3642			6
11	1054.0495	527.5284	1037.0190	519.0132	1036.0342	518.5208	G	536.6223	268.8148	519.5918	260.2996			5
12	1125.1274	563.0674	1108.0969	554.5521	1107.1121	554.0598	A	479.5710	240.2892	462.5405	231.7739			4
13	1272.3229	636.6651	1255.2924	628.1499	1254.3076	627.6575	М	408.4931	204.7502	391.4626	196.2350			3
14	1386.4255	693.7164	1369.3950	685.2012	1368.4102	684.7088	Ν	261.2976	131.1525	244.2671	122.6372			2
15							K	147.1950	74.1012	130.1645	65.5859			1

Figure S10. Fragmentation patterns of peptide from HPGDFGADAQGAM(Ox)NK the digestion of His3 Mn^{III}Mb reacted with KHSO₅.

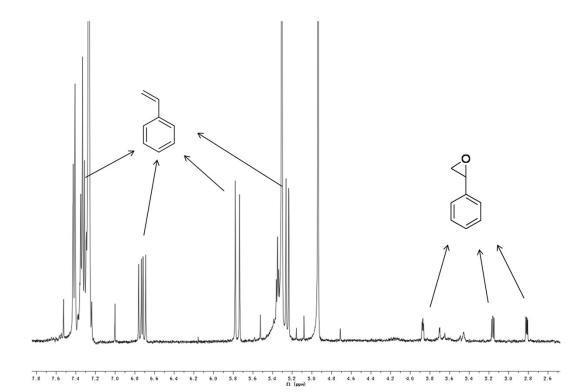
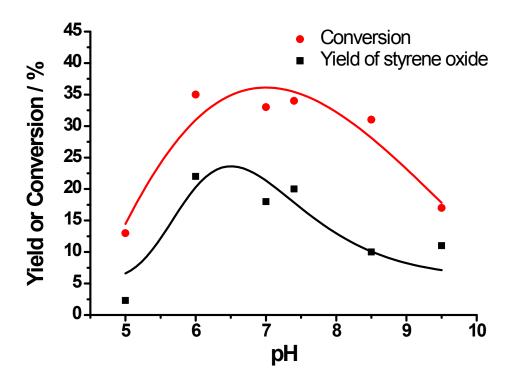



Figure S11. ¹H NMR after the reaction of styrene and Oxone[®] catalyzed by His3 $Mn^{III}Mb$.

Figure S12. Conversion of epoxidation (red) and yield of styrene oxide (black) at different pHs. Conversion was calculated by 1-(unreacted styrene/total added styrene). Yield was based on styrene oxide generated/total added styrene.