Supporting information

Mesoporous SiO₂/Carbon Hollow Spheres Applied towards High Rate-Performance Li-Battery Anode

Chun-Han Hsu,^{*a,c**}, *Chien-Wen Wang^a*, *Jing-De Zhou^a*, *Wei-Fu Chen^b*, *Hong-Ping Lin^c*, and *Ping-Lin Kuo^{a*}*

- a. Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, ROC
- b. Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan, ROC
- c. Department of Chemistry, National Cheng Kung University, Tainan, Taiwan, ROC
- *Author to whom all correspondence should be addressed

Tel.: +886-6-2757575 ext 62681 E-mail: <u>chunhanhsu@gmail.com</u>

Figure S1. The TEM image corresponding C, O, and Si EDX elemental mappings of the single SiO₂/C sphere.

Figure S2. Si 2p and O 1s XPS spectra for as-prepared SiO₂/C hollow sphere.

Preparation of mesoporous SiO₂/Carbon hollow nanocomposites

According to Lin [20-24], the typical synthesis of SiO₂/Carbon composites: poly(ethylene oxide) (PEO, Acrös, MW 20000) (1.0 g) and PF (1.0 g; PF2180, phenol/aldehyde, 0.8–0.9; MW ca. 96000; Chung-Chun Plastic, Taiwan) polymers were dissolved in a mixture of ethanol (20.0 g) and water (10.0 g) to form a clear solution. Then, the PF–PEO blended solution was quickly poured into an acidified sodium silicate aqueous solution (pH = 2.0) at 40 °C, which was prepared by adjusting the pH value of a mixture of sodium silicate (27 wt.-% SiO₂, 4.0 g, Sigma-Aldrich) and water (150.0 g) to 6.0 and aging for 3 min. A light-yellow precipitate formed within a few seconds. Filtration, washing, and drying at 100 °C yield the PEO–PF/silica hollow spheres. The SiO₂/C hollow spheres were formed after pyrolysis at 800 °C under a N₂ atmosphere for 2 h; in contrast, the SiO₂ hollow spheres are produced after calcination at 600 °C under an O₂ atmosphere for 12 h. For comparison, the carbon hollow spheres were prepared by removing the SiO₂ from SiO₂/C hollow spheres under 5.0 M NaOH treatments. The TGA curve, the N₂ adsorption and desorption curves and the rate-performance test for carbon hollow spheres were show in Figure S3.

Figure S3. (a) The TGA curve, (b) the N₂ adsorption/desorption isotherms and (c) the rateperformance test for carbon hollow spheres

Table S1. In	mpedance	parameters	of the	SiO_2/C	and	SiO ₂	cells.
--------------	----------	------------	--------	-----------	-----	------------------	--------

Sample	SiO _{2/} C-fresh	SiO ₂ /C-after 3rd cycling	SiO ₂ -fresh	SiO ₂ -after 3rd cycling	
Rb	2.2	26	5 1	2.2	
(Ω)	3.3	2.0	5.1	5.5	
Rct	60.4	54.0	10 5	102.9	
(Ω)	00.4	34.9	48.3		