Supporting Information for

Two-step warming solvothermal syntheses, luminescence and slow magnetic relaxation of isostructural dense LnMOFs based on nanoscale 3-connected linkers

Cai-Ming Liu,^{a,*} De-Qing Zhang,^a Yong-Sheng Zhao,^b Xiang Hao,^a and Dao-Ben Zhu^a

 ^aBeijing National Laboratory for Molecular Sciences, Center for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
 ^bKey Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

 Table S1. Continuous Shape Measures calculation for the Dy(III) ion in 2.

S H A P E v2.1 Continuous Shape Measures calculation (c) 2013 Electronic Structure Group, Universitat de Barcelona Contact: llunell@ub.edu

Dy structures

0P-8	1 D8h	Octagon
HPY-8	2 C7v	Heptagonal pyramid
HBPY-8	3 D6h	Hexagonal bipyramid
CU-8	4 Oh	Cube
SAPR-8	5 D4d	Square antiprism
TDD-8	6 D2d	Triangular dodecahedron
JGBF-8	7 D2d	Johnson gyrobifastigium J26
JETBPY-8	8 D3h	Johnson elongated triangular bipyramid J14
JBTPR-8	9 C2v	Biaugmented trigonal prism J50
BTPR-8	10 C2v	Biaugmented trigonal prism

JSD-8		11 D2d	Snut	o dipł	nenoid	l J84							
TT-8		12 Td	Tria	Triakis tetrahedron									
ETBPY-8		13 D3h	Elor	ngated	l trig	gonal	bipyra	amid					
Structure [ML8] OP-8	HPY-8	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JETBPY-8	JBTPR-8	BTPR-8	JSD-8	TT-8	ETBPY-
8													
ABOXIY	, 31.941,	22.824,	15. 754,	11. 389,	2.217,	2.236,	13. 936,	26.951,	1. 529,	1.657,	3.526,	11.450,	23. 937

Fig. S1. The simulative X-ray diffraction pattern and X-ray thermodiffractogram of **1** under air from 25 to 450 °C (the broad peak at around 7° of 2θ diffraction angle comes from the background of Al₂O₃).

Fig. S2. TGA curve for complex 1.

Fig. S3. The simulative (black) and experimental (blue, at room temperature) powder X-ray diffraction patterns for **2**.

Fig. S4. TGA curve for complex 2.

Table S2. Potential void volume of LnMOFs based on the BTB³⁻ ligand.

Compounds	Potential void volume	Reference
$Tb(BTB)(H_2O) \cdot 2(C_6H_{12}O)$	$S_{\text{Langmuir}} = 1330 \text{ m}^2 \text{g}^{-1}$	7a
Ce(BTB)(H ₂ O)	$S_{\text{Connolly}} = 1797 \text{ m}^2 \text{g}^{-1}$	7b
La(BTB)(H ₂ O)· 3DMF	$S_{\text{Langmuir}} = 1385 \text{ m}^2\text{g}^{-1};$ 51.9% (by PLATON)	7c
[Gd(BTB)(DMSO) ₂]·H ₂ O	49.8% (by PLATON)	7d
[Eu _{1.5} (BTB) _{1.5} (H ₂ O)]·3DMF	38.5% (by PLATON)	7e
[Ln(BTB)H ₂ O]	7.7% (by PLATON)	This work

Fit Parameters $Fit = A + B_1.exp(-t/\tau_1) + B_2.exp(-t/\tau_2)$

	Value	Std Dev		Value	Std Dev	Rel %
τ_1	2.468E-9	1.191E-10	B_1	1.141E-2	7.932E-4	34.50
τ_2	1.125E-10	7.229E-12	B_2	4.754E-1	2.658E-2	65.50
А	2.134E+0					

Fig. S5. ${}^{5}D_{0}$ decay for fluorescence and fitted curves of complex 1 measured at room temperature. Emission was monitored at 612 nm and the excitation was performed at 395 nm.

Fit Parameters Fit = A + B₁.exp(-t/ τ_1) + B₂.exp(-t/ τ_2)

	Value	Std Dev	7	Value	Std Dev	Rel %
τ_1	6.40	0.33	B_1	1399.25	341.49	8.49
τ_2	463.98	5.85	B_2	206.80	9.16	65.50
А	-0.615					

Fig. S6. ${}^{5}D_{0}$ decay for phosphorescence and fitted curves of complex 1 measured at room temperature. Emission was monitored at 612 nm and the excitation was performed at 395 nm.

Fig. S7. χT versus *T* plot of **2**.

Fig. S8. *M* versus H/T plots at 2–6 K of **2**.

Fig. S9. χ'' versus *T* plots measured in a 2.5 Oe ac magnetic field with a zero dc field for 2.

Fig. S10. χ' versus *T* plots measured in a 2.5 Oe ac magnetic field with a 1000 Oe dc field for 2.

Fig. S11. Magnetic axis of the Dy^{3+} ion in 2 calculated by an electrostatic method.

Fig. S12. Frequency dependence of the in-phase (χ' , top) and out-of-phase (χ'' , bottom) ac susceptibility of **2** at 2.0 K. the solid lines represent the best fitting with the sum of two modified Debye functions.

Fig. S13. Frequency dependence of the in-phase (χ' , top) and out-of-phase (χ'' , bottom) ac susceptibility of **2** at 2.2 K. the solid lines represent the best fitting with the sum of two modified Debye functions.

Fig. S14. Frequency dependence of the in-phase (χ' , top) and out-of-phase (χ'' , bottom) ac susceptibility of **2** at 2.4 K. the solid lines represent the best fitting with the sum of two modified Debye functions.

Fig. S15. Frequency dependence of the in-phase (χ' , top) and out-of-phase (χ'' , bottom) ac susceptibility of **2** at 2.6 K. the solid lines represent the best fitting with the sum of two modified Debye functions.

Fig. S16. Plot of *M* versus *H* at 1.9 K from –10000 to 10000 Oe for 2.

<i>T</i> (K)	$\chi_2(\text{cm}^3.\text{mol}^{-1})$	$\chi_1(\text{cm}^3.\text{mol}^{-1})$	$\chi_0(\mathrm{cm}^3.\mathrm{mol}^{-1})$	$\tau_1(s)$	α_1	$ au_2(s)$	α_2
2.0	6.8539	3.44511	3.71894	0.008	1.863E-7	0.00204	0.65798
2.2	6.46216	3.24677	3.56324	0.00669	0.00019	0.00145	0.64117
2.4	5.75198	4.02202	3.68468	0.05961	0.00006	0.00033	0.42496
2.6	5.49167	3.89797	3.54221	0.06924	0.03696	0.00027	0.39353

Table S3. Linear combination of two modified Debye model fitting parameters at 2.0-2.6 K of **2** under 1 kOe dc field.

The sum of two modified Debye functions:

$$\chi_{ac}(\omega) = \frac{\chi_2 - \chi_1}{1 + (i\omega\tau_2)^{(1-\alpha_2)}} + \frac{\chi_1 - \chi_0}{1 + (i\omega\tau_1)^{(1-\alpha_1)}} + \chi_0$$
(1)

$$\chi' = \frac{(\chi_2 - \chi_1)[1 + (\omega\tau_2)^{1-\alpha_2}\sin 1/2\alpha_2\pi]}{1 + 2(\omega\tau_2)^{(1-\alpha_2)}\sin 1/2\alpha_2\pi + (\omega\tau_2)^{2(1-\alpha_2)}} + \frac{(\chi_1 - \chi_0)[1 + (\omega\tau_1)^{1-\alpha_1}\sin 1/2\alpha_1\pi]}{1 + 2(\omega\tau_1)^{(1-\alpha_1)}\sin 1/2\alpha_1\pi + (\omega\tau_1)^{2(1-\alpha_1)}} + \chi_0$$
(2)

$$\chi'' = \frac{(\chi_2 - \chi_1)[(\omega\tau_2)^{1-\alpha_2}\cos 1/2\alpha_2\pi]}{1 + 2(\omega\tau_2)^{(1-\alpha_2)}\sin 1/2\alpha_2\pi + (\omega\tau_2)^{2(1-\alpha_2)}} + \frac{(\chi_1 - \chi_0)[(\omega\tau_1)^{1-\alpha_1}\cos 1/2\alpha_1\pi]}{1 + 2(\omega\tau_1)^{(1-\alpha_1)}\sin 1/2\alpha_1\pi + (\omega\tau_1)^{2(1-\alpha_1)}} + \chi_0$$
(3)