Electronic Supplementary Information

Highly selective detection of Hg^{2+} and MeHgI by di-pyridin-2-yl-[4-(2-pyridin-4-yl-vinyl)-phenyl]-amine and its zinc coordination polymer

Min-Min Chen,^{ab} Liang Chen,^a Hong-Xi Li,*^a Lee Brammer*^c and Jian-Ping Lang*^{ab}

^a State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China

^c Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK

*E-mail: lihx@suda.edu.cn *E-mail: lee.brammer@sheffield.ac.uk *E-mail: jplang@suda.edu.cn

Table of Contents

Fig. S1	PXRD patterns for 1. S3
Fig. S2	The TGA curve for 1 . S3
Fig. S3 Hg ²⁺ ; (b)	Plot of the fluorescence intensity of 1 dispersed in water at different concentrations of (a) MeHgI. S4
Fig. S4	The XPS spectra for two samples. S5

Fig. S1 PXRD patterns for 1.

The powder X-ray diffraction (PXRD) measurements were carried out on a PANalytical X'Pert PRO MPD system (PW3040/60) using Cu-K α radiation ($\lambda = 1.54050$ Å). The data were collected at room temperature in flat-plate mode in a 2 θ range of 5-30° with a scan speed of 20 °/min. The operating power was 40kV/40mA.

Fig. S2 The TGA curve for 1 (scan rate 5 °C/min)

The framework stability of **1** was investigated by thermogravimetric analysis (TGA) under an ambient atmosphere (Fig. S2). The first weight loss from 20 °C to 70 °C corresponds to the loss of solvent molecules. The main weight loss produced in the temperature range 300–900 °C can be attributed to the decomposition of the organic linkers. The residual species was assumed to be ZnO (12.61% *vs* calcd. 12.92 %).

(a)

Fig. S3 Plot of the fluorescence intensity of **1** dispersed in water at different concentrations of (a) Hg^{2+} ; (b) MeHgI. Inset: linear relation between the fluorescence intensity and the concentrations of (a) Hg^{2+} in the range of 0.02–0.17 ppm ($R^2 = 0.94$); (b) MeHgI in the range of 0.06–0.21 ppm ($R^2 = 0.98$).

Fig. S4 The XPS spectra for four samples. (a) The Zn $2p_{3/2}$ and Zn $2p_{1/2}$ core level spectrum for 1; (b) The Zn $2p_{3/2}$ and Zn $2p_{1/2}$ core level spectrum for Hg²⁺-immersed 1; (c) The Hg 4d_{5/2} and Hg 4d_{3/2} core level spectrum for 1; (d) The Hg 4d_{5/2} and Hg 4d_{3/2} core level spectrum for Hg²⁺-immersed 1.