Supporting Information (SI)

LiAlH₄ supported on TiO₂/hierarchically porous carbon

nanocomposite with enhanced hydrogen storage properties†

Yaran Zhao, Mo Han, Haixia Wang, Chengcheng Chen, and Jun Chen*

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of

Chemistry, Nankai University, Tianjin 300071, China

Fax: 86-22-23509571; Tel:86-22-23506808. E-mail: chenabc@nankai.edu.cn

Synthesis of hierarchically porous carbon (HPC)

In the process, 0.5g 2123# thermoplastic phenolic resin (Tianjin Letai Chemical Plant) was dissolved in 20 mL of absolute ethanol at 50 °C followed by adding 2 mL tetraethyl orthosilicate (TEOS) and stirred for 15 min until the solution became yellow and transparent. Then, 50mL 25wt% aqueous ammonia /ethanol mixture (volume ratio is 1:4) was rapidly poured into the solution under vigorous stirring. After a 3 h reaction at 50 °C, the solvent was gradually dried at 60 °C. The obtained yellow composite was calcined at 700 °C for 2 h in an Ar atmosphere. Subsequently, the black product was treated with 20 mL HF solution (10 wt%) to remove the silicon dioxide template and washed with distilled water, followed by drying at 80 °C in oven to get the product.

Fig. S1 Particle size analysis of TiO₂/HPC nanocomposite with 40 wt% TiO₂.

Fig. S2 SEM images of TiO₂/HPC nanocomposites with (a, b) 20 wt% TiO₂, (c, d) 50 wt% TiO₂, (e, f) 60 wt% TiO₂.

Fig. S3 N2 adsorption/desorption curves of (a) HPC, (b) TiO2/HPC nanocomposite with 40 wt% TiO2, (c) 37LAH-

25TiO₂/38HPC,

Samula	Surface area	total pore volume	Average pore	
Sample	(m ² .g ⁻¹)	(cm ³ .g ⁻¹)	diameter (nm)	
НРС	412.55	0.3511	3.40	
TiO ₂ /HPC with 40 wt% TiO ₂	254.21	0.2892	4.55	
37LAH-	22.14	0.0821	14.83	
25110 ₂ /38HPC				

Table S1. Summary of BET specific surface area, total pore volume and average pore diameter.

The isotherm curves of HPC display a typical IUPAC type-IV adsorption/desorption behavior, indicating mesoporous structure. After supporting 40 wt% TiO₂ nanoparticles, the hysteresis in the isotherm of TiO₂/HPC nonocomposite becomes smaller implying the decrease amount of mesopores and the surface area of TiO₂/HPC is decreased to 254.21 m² g⁻¹. The highly distribution of TiO₂ nanoparticles attributes to the large surface of HPC. Besides, plenty of pores would be favorable for the decomposition of LiAlH₄ by offering abundant channels for the diffusion of hydrogen.

Fig. S4 SEM images of (a) pure-LAH, (b) 29LAH-28TiO₂/43HPC, (c) 45LAH-22TiO₂/33HPC, (d) 55LAH-18TiO₂/27HPC.

For pure LiAlH₄, it is composed of monolith between 1-20 µm. In the sample 29LAH-

 $28\text{TiO}_2/43\text{HPC}$, the TiO₂/HPC was not completely coated by LiAlH₄ and the baked parts may not play the efficient role to facilitate the decomposition of LiAlH₄ without close contact. When increasing the loading weight of LiAlH₄ to 50, 60 wt%, the congregation of LiAlH₄ is more and more serious. This is unfavorable for reducing the dehydrogenation temperatures of LiAlH₄.

Fig. S5 FTIR spectra of (a) pure LAH and (b) 55LAH-18TiO₂/27HPC, (c) 45LAH-22TiO₂/33HPC, (d) 37LAH-25TiO₂/38HPC, (e) 29LAH-28TiO₂/43HPC composites after aging for 5 months at room temperature.

Fig. S6 (a) SEM image of LAH-HPC, (b) SEM image of LAH-TiO₂, (c) XRD patterns, (d) FTIR spectra and (e) TPD signal curves of LAH-HPC and LAH-TiO₂.

4

Fig. S7 The line chart of desorption temperatures.

Fig. S8 Hydrogen desorption kinetic curves of (a) pure-LAH, (b) LAH-TiO₂, (c) LAH-HPC at different temperatures.

Pure	e-LAH	LA	H-TiO ₂	LAI	І-НРС	37LAH-25	TiO ₂ /38HPC
T/°C	H ₂ /wt%	T/°C	H ₂ /wt%	T/°C	H ₂ /wt%	T/°C	H ₂ /wt%
150	3.34	145	3.86	145	4.28	100	2.30
160	5.30	160	5.55	160	5.57	110	3.07
178	5.31	170	5.87	170	6.61	120	3.67
188	5.46					130	4.32

Table S2. The dehydrogenation capacities (calculated from pure LiAlH₄) of pure-LAH, LAH-HPC, LAH-TiO₂ and $37LAH-25TiO_2/38HPC$ at various temperatures.

Table S3. The activation energy of pure-LAH, LAH-HPC, LAH-TiO₂ and 37LAH-25TiO₂/38HPC according to Arrhenius plots.

samples				37LAH-
	Pure-LAH	LAH-IIO ₂	LAH-НРС	25TiO ₂ /38HPC
Slope	-13.6	-6.97	-7.64	-5.7
Intercept	29.6	14.58	16.12	12.7
Ea (kJ/mol)	113.2±6.4	57.8±2.1	63.5±0.4	47.1±3.5

Fig. S9 The error bars for the Ea calculation of pure-LAH, LAH-HPC, LAH-TiO₂ and 37LAH-25TiO₂/38HPC.

Fig. S10 SEM image and EDS elemental mapping images of 37LAH-25TiO₂/38HPC after dehydrogenation.

Fig. S11 (a) SEM image and (b) TEM image of $37LAH-25TiO_2/38HPC$ after re-adsorbing H₂ at 300 °C under a hydrogen pressure of 4 MPa.