An Anionic Metal-Organic Framework Based on an Angular Tetracarboxylic Acid and Mononuclear Copper Ion for Selective Gas

Adsorption

Jingjing Jiao,^a Huimin Liu,^a Fengli Chen,^a Dongjie Bai,^a Shunshun Xiong,^{b*} and Yabing He^{*a}

^{*a*} College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China. E-mail: <u>heyabing@zjnu.cn</u>.

^b Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China. E-mail: ssxiong@caep.cn

Fig. S1 Photograph of the as-synthesized ZJNU-55.

Fig. S2 PXRD patterns.

Fig. S3 TGA curve of the as-synthesized ZJNU-55 under a nitrogen atmosphere.

Fig. S4 FTIR spectra of the organic ligand and as-synthesized ZJNU-55.

 $S_{\text{BET}} = (1/(6.5484 \times 10^{-7} + 0.00967))/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 450.1 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = (1/(0.00856)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 508.6 \text{ m}^2 \text{ g}^{-1}$ *Fig. S5* (a) BET and (b) Langmuir plots for **ZJNU-55a**.

Fig. S6 N_2 adsorption-desorption isotherms of **ZJNU-55** activated at different temperatures. Solid and open symbols represent adsorption and desorption, respectively.

Fig. S7 Five cycles of C_2H_2 adsorption-desorption isotherms at 298 K. Solid and open symbols represent adsorption and desorption, respectively.

Fig. S8 Comparison of the pure-component (a) C_2H_2 , (b) CO_2 and (c) CH_4 isotherm data with the fitted isotherms.

Fig. S9 Isosteric plots for (a) C_2H_2 , (b) CO_2 and (c) CH_4 adsorption.

Fig. S10 ¹H and ¹³C NMR spectra.

Empirical formula	$C_{21}H_{10}CuN_2O_8$		
Formula weight	481.86		
Temperature (K)	296(2)		
Wavelength (Å)	0.71073		
Crystal system	Hexagonal		
Space group	P62		
	a = 22.7393(15) Å .		
	b = 22.7393(15) Å		
Unit cell dimensions	c = 10.7316(10) Å		
	$\alpha = 90^{\circ}$		
	$\beta = 90^{\circ}$		
	$\gamma = 120^{\circ}$		
Volume (Å ³)	4805.6(8)		
Z	6		
Calculated density (g cm ⁻³)	0.999		
Absorption coefficient (mm ⁻¹)	0.715		
<i>F</i> (000)	1458		
Crystal size (mm)	0.270 ×0.160 ×0.110		
θ range for data collection (°)	2.610 to 27.540		
	$-24 \le h \le 29$		
Limiting indices	$-29 \le k \le 29$		
	$-13 \le l \le 13$		
Reflections collected / unique	51818 / 7386		
R _{int}	0.0684		
Completeness to $\theta = 25.242$	99.9%		
Absorption correction	Empirical		
Max. and min. transmission	0.925 and 0.830		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	7386 / 23 / 278		
Goodness-of-fit on F^2	1.038		
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0992, wR_2 = 0.2992$		
<i>R</i> indices (all data)	$R_1 = 0.1148, wR_2 = 0.3149$		
Absolute structure parameter	0.5		
Extinction coefficient	0		
Largest diff. peak and hole (e Å ⁻³)	1.447 and -0.547		
CCDC	1492066		

Table S1 Crystal data and structure refinement for **ZJNU-55**.

Table S2 Langmuir-Freundich parameters for adsorption of C_2H_2 , CO_2 , and CH_4 in ZJNU-55a.

guest	$q_{\rm sat}$ (mmol g ⁻¹)	b_0 (kPa) ^{-ν}	E (kJ mol ⁻¹)	v
C_2H_2	3.67137	8.66196×10 ⁻⁸	32.95	0.81845
CO ₂	4.05461	2.18764×10 ⁻⁶	22.60	0.78765
CH ₄	2.64787	4.46682×10 ⁻⁷	20.18	1

MOE	C ₂ H ₂ uptakes	C_2H_2/CH_4	$Q_{ m st}$	Def	
MOFS	$[cm^{3}(STP)g^{-1}]$	selectivities	(kJ mol ⁻¹)	Ref	
Cu-TDPAT	177.7	127.1	42.5	1	
Cu-TDPAH	155.7	80.9	23.5	2	
ZJU-61	139.23	74.4	23.98	3	
UTSA-50	90.6	68.0	39.4	4	
Cu ₂ TPTC-Me	203	60.01	19.1	5	
ZJNU-47a	213.8	58.5	35.0	6	
UTSA-15	34	55.6	39.5	7	
ZJNU-54a	210.5	50.5	35.4	8	
Cu ₂ TPTC-OMe	204	46.14	20.1	5	
ZJU-26	84	45.9	32.7	9	
Cd-Tipa	64.13	39.1	41.05	10	
ZJNU-55a	56.3	35.5	42.4	This work	
M'MOF-20	21	34.9	33.7	11	
Zn ₅ (BTA) ₆ (TDA) ₂	44	22.3	37.3	12	
UTSA-72a	27.8	21.1	20.2	13	
Ni-TATB	64.1	16.3	NA	14	
UTSA-36a	56.8	16.1	29.0	15	
[Zn ₄ (OH) ₂ (1,2,4-BTC)]	53	14.7	28.1	16	
ZJNU-61a(Ho)	48.0	9.9	23.9	17	
ZJU-30a	52.6	9.58	31.3	18	
Cu(BDC-OH)	43	9.3	25.7	19	
UTSA-10a	43.0	8.1	19	20	
Yb-BPT	23.9	7.8	30.4	21	
UTSA-28a-Cu	75.5	6.9	25.4	22	
Cu-BBTC	84	5.74	37.64	23	
UTSA-38a	63	5.6	24.7	24	
FIR-51	141.9	NA	24.48	25	
InAg(na) ₄	98.14 ^{<i>a</i>}	NA	24.79	26	
ZJU-48a	57.07	NA	15.6	27	

Table S3 C_2H_2 uptakes and the Henry's Law adsorption selectivities of C_2H_2/CH_4 in the reported MOFs.

TDPAT = 2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine;

TDPAH = 2,5,8-tris(3,5-dicarboxylphenylamino)-*s*-heptazine;

na = nicotinic acid;

BBTC = 1, 1'-butadiynebenzene-3,3',5,5'-tetracarboxylate;

Tipa = tris(4-(1H-imidazol-1-yl)phenyl)amine;

TATB = 4,4',4"-*s*-triazine-2,4,6-triyltribenzoate;

1,2,4-BTC = benzene-1,2,4-tricarboxylate;

HBTA = 1,2,3-benzenetriazole;

 $H_2TDA =$ thiophene-2,5-dicarboxylic acid;

 $H_2BDC-OH = 2$ -hydroxy-benzenedicarboxylic acid. NA = not available a cm³ (STP) cm⁻³.

References

1. Liu, K.; Ma, D.; Li, B.; Li, Y.; Yao, K.; Zhang, Z.; Han, Y.; Shi, Z., High storage capacities and separation selectivity of C_2 hydrocarbons over methane in the metal-organic framework Cu-TDPAT. *J. Mater. Chem. A* **2014**, *2*, 15823-15828.

2. Liu, K.; Li, B.; Li, Y.; Li, X.; Yang, F.; Zeng, G.; Peng, Y.; Zhang, Z.; Li, G.; Shi, Z.; Feng, S.; Song, D., An N-rich metal-organic framework with an rht topology: high CO₂ and C₂ hydrocarbons uptake and selective capture from CH₄. *Chem. Commun.* **2014**, *50*, 5031-5033.

3. Duan, X.; Zhang, Q.; Cai, J.; Cui, Y.; Wu, C.; Yang, Y.; Qian, G., A new microporous metal-organic framework with potential for highly selective separation methane from acetylene, ethylene and ethane at room temperature. *Microporous Mesoporous Mater.* **2014**, *190*, 32-37.

4. Xu, H.; He, Y.; Zhang, Z.; Xiang, S.; Cai, J.; Cui, Y.; Yang, Y.; Qian, G.; Chen, B., A microporous metal-organic framework with both open metal and Lewis basic pyridyl sites for highly selective C_2H_2/CH_4 and C_2H_2/CO_2 gas separation at room temperature. *J. Mater. Chem. A* **2013**, *1*, 77-81.

5. Xia, T.; Cai, J.; Wang, H.; Duan, X.; Cui, Y.; Yang, Y.; Qian, G., Microporous metal-organic frameworks with suitable pore spaces for acetylene storage and purification. *Micropor. Mesopor. Mater.* **2015**, *215*, 109-115.

6. (a) Song, C.; Hu, J.; Ling, Y.; Feng, Y.; Chen, D.-L.; He, Y., Merging Open Metal Sites and Lewis Basic Sites in a NbO-type Metal-Organic Framework for Improved C_2H_2/CH_4 and CO_2/CH_4 Separation. *Dalton Trans.* **2015**, *44* (33), 14823 -14829; (b) Song, C.; Jiao, J.; Lin, Q.; Liu, H.; He, Y., C_2H_2 Adsorption in Three Isostructural Metal-Organic Frameworks: Boosting C_2H_2 Uptake by Rational Arrangement of Nitrogen Sites. *Dalton Trans.* **2016**, *45*, 4563-4569.

7. Chen, Z.; Xiang, S.; Arman, H. D.; Mondal, J. U.; Li, P.; Zhao, D.; Chen, B., Three-Dimensional Pillar-Layered Copper(II) Metal-Organic Framework with Immobilized Functional OH Groups on Pore Surfaces for Highly Selective CO_2/CH_4 and C_2H_2/CH_4 Gas Sorption at Room Temperature. *Inorg. Chem.* **2011**, *50*, 3442-3446.

8. Jiao, J.; Dou, L.; Liu, H.; Chen, F.; Bai, D.; Feng, Y.; Xiong, S.; Chen, D.-L.; He, Y., An Aminopyrimidine-Functionalized Cage-Based Metal-Organic Framework Exhibiting Highly Selective Adsorption of C_2H_2 and CO_2 over CH_4 . *Dalton Trans.* **2016**, *45*, 13373-13382.

9. Duan, X.; Cai, J.; Yu, J.; Wu, C.; Cui, Y.; Yang, Y.; Qian, G., Three-dimensional copper (II) metal-organic framework with open metal sites and anthracene nucleus for highly selective C_2H_2/CH_4 and C_2H_2/CO_2 gas separation at room temperature. *Microporous Mesoporous Mater.* **2013**, *181*, 99-104.

10. Fu, H.-R.; Kang, Y.; Zhang, J., Highly Selective Sorption of Small Hydrocarbons

and Photocatalytic Properties of Three Metal-Organic Frameworks Based on Tris(4-(1H-imidazol-1-yl)phenyl)amine Ligand. *Inorg. Chem.* **2014**, *53*, 4209-4214.

11. Zhang, Z.; Xiang, S.; Hong, K.; Madhab, C. D.; Arman, H. D.; Garcia, M.; Mondal, J. U.; Thomas, K. M.; Chen, B., Triple Framework Interpenetration and Immobilization of Open Metal Sites within a Microporous Mixed Metal-Organic Framework for Highly Selective Gas Adsorption. *Inorg. Chem.* **2012**, *51*, 4947-4953.

12. Zhang, Z.; Xiang, S.; Chen, Y.-S.; Lee, S. M.; Phely-Bobin, T.; Chen, B., A Robust Highly Interpenetrated Metal-Organic Framework Constructed from Pentanuclear Clusters for Selective Sorption of Gas Molecules. *Inorg. Chem.* **2010**, *49*, 8444-8448.

13. Alawisi, H.; Li, B.; He, Y.; Arman, H. D.; Asiri, A. M.; Wang, H.; Chen, B., A Microporous Metal-Organic Framework Constructed from a New Tetracarboxylic Acid for Selective Gas Separation. *Cryst. Growth Des.* **2014**, *14*, 2522-2526.

14. Li, J.; Fu, H.-R.; Zhang, J.; Zheng, L.-S.; Tao, J., Anionic Metal-Organic Framework for Adsorption and Separation of Light Hydrocarbons. *Inorg. Chem.* **2015**, *54*, 3093-3095.

15. Das, M. C.; Xu, H.; Xiang, S.; Zhang, Z.; Arman, H. D.; Qian, G.; Chen, B., A New Approach to Construct a Doubly Interpenetrated Microporous Metal-Organic Framework of Primitive Cubic Net for Highly Selective Sorption of Small Hydrocarbon Molecules. *Chem. Eur. J.* **2011**, *17*, 7817-7822.

16. Zhang, Z.; Xiang, S.; Rao, X.; Zheng, Q.; Fronczek, F. R.; Qian, G.; Chen, B., A rod packing microporous metal-organic framework with open metal sites for selective guest sorption and sensing of nitrobenzene. *Chem. Commun.* **2010**, *46*, 7205-7207.

17. Ling, Y.; Jiao, J.; Zhang, M.; Liu, H.; Bai, D.; Feng, Y.; He, Y., A Porous Lanthanide Metal-Organic Framework Based on a Flexible Cyclotriphosphazene-Functionalized Hexacarboxylate Exhibiting Selective Gas Adsorption. *CrystEngComm* **2016**, 6254-6261.

18. Cai, J.; Yu, J.; Xu, H.; He, Y.; Duan, X.; Cui, Y.; Wu, C.; Chen, B.; Qian, G., A Doubly Interpenetrated Metal-Organic Framework with Open Metal Sites and Suitable Pore Sizes for Highly Selective Separation of Small Hydrocarbons at Room Temperature. *Cryst. Growth Des.* **2013**, *13*, 2094-2097.

19. Chen, Z.; Xiang, S.; Arman, H. D.; Li, P.; Tidrow, S.; Zhao, D.; Chen, B., A Microporous Metal-Organic Framework with Immobilized -OH Functional Groups within the Pore Surfaces for Selective Gas Sorption. *Eur. J. Inorg. Chem.* **2010**, 3745-3749.

20. He, Y.; Song, C.; Ling, Y.; Wu, C.; Krishna, R.; Chen, B., A new MOF-5 homologue for selective separation of methane from C_2 hydrocarbons at room temperature. *APL Mater.* **2014**, *2*, 124102.

21. Guo, Z.; Xu, H.; Su, S.; Cai, J.; Dang, S.; Xiang, S.; Qian, G.; Zhang, H.; O'Keeffe, M.; Chen, B., A robust near infrared luminescent ytterbium metal-organic framework for sensing of small molecules. *Chem. Commun.* **2011**, *47*, 5551-5553.

22. He, Y.; Guo, Z.; Xiang, S.; Zhang, Z.; Zhou, W.; Fronczek, F. R.; Parkin, S.; Hyde, S. T.; O'Keeffe, M.; Chen, B., Metastable Interwoven Mesoporous Metal-Organic Frameworks. *Inorg. Chem.* **2013**, *52*, 11580-11584.

23. Wang, L.; Zhai, L.; Ren, X.; Zhang, W., A microporous metal-organic framework with butynelene functionality for selective gas sorption. *J. Solid State Chem.* **2013**, 204, 53-58.

24. Das, M. C.; Xu, H.; Wang, Z.; Srinivas, G.; Zhou, W.; Yue, Y.-F.; Nesterov, V. N.; Qian, G.; Chen, B., A Zn₄O-containing doubly interpenetrated porous metal-organic framework for photocatalytic decomposition of methyl orange. *Chem. Commun.* **2011**, *47*, 11715-11717

25. Fu, H.-R.; Wang, F.; Zhang, J., A stable zinc-4-carboxypyrazole framework with high uptake and selectivity of light hydrocarbons. *Dalton Trans.* **2015**, *44*, 2893-2896. 26. Tan, Y.-X.; He, Y.-P.; Zhang, J., High and selective sorption of C₂ hydrocarbons in heterometal-organic frameworks built from tetrahedral units. *RSC Adv.* **2015**, *5*, 7794-7797.

27. Xu, H.; Cai, J.; Xiang, S.; Zhang, Z.; Wu, C.; Rao, X.; Cui, Y.; Yang, Y.; Krishna, R.; Chen, B.; Qian, G., A cationic microporous metal-organic framework for highly selective separation of small hydrocarbons at room temperature. *J. Mater. Chem. A* **2013**, *1*, 9916-9921.