Electronic Supplementary Information

Intense Blue Emission and Reversible Hypsochromic Shift of Luminescence Caused by Grinding Based on Silver(I) Complexes

Daichi Kakizoe, Michihiro Nishikawa, Taku Degawa, and Taro Tsubomura*

*Department of Materials and Life Science, Seikei University, Kichijoji-kitamachi, Musashino, Tokyo 180-8633, Japan. E-mail: <u>tsubomura@st.seikei.ac.jp</u>; Fax: +81-422-37-3871; Tel. +81-422-37-3752.

Fig. S1. (Upper) The helix formed by 1 in the crystal by the intermolecular interaction between the ligand and the counter anion. (Lower) Detailed illustration showing the intermolecular distances.

Fig. S2. ¹H NMR spectrum of **1** in CD_2Cl_2 at room temperature.

Fig. S3. ${}^{31}P{}^{1}H{}NMR$ spectrum of 1 in CD_2Cl_2 at room temperature.

Fig. S4. ¹H NMR spectrum of **2** in CD_2Cl_2 at room temperature.

Fig. S5. ${}^{31}P{}^{1}H{}NMR$ spectrum of **2** in CD₂Cl₂ at room temperature.

Fig. S6. ¹H NMR spectrum of **3** in CD₂Cl₂ at room temperature.

Fig. S7. ${}^{31}P{}^{1}H{}NMR$ spectrum of **3** in CD₂Cl₂ at room temperature.

Fig. S8. ¹H NMR spectrum after 3 days of 1 in CD₂Cl₂ at room temperature.

Fig. S9. ¹H NMR spectrum after 3 days of 2 in CD_2Cl_2 at room temperature.

Fig. S10. ¹H NMR spectrum after 3 days of **3** in CD_2Cl_2 at room temperature.

Fig. S11. (a) Absorption spectra of 1 (green), 2 (red) and 3 (blue) in dichloromethane at room temperature. (b) Absorption spectra of dppbz (red), dfpbz (green), dtbpbz (blue) and Ag(IPr)Cl (purple) in dichloromethane at room temperature.

Fig. S12. Emission spectrum of ligands,dppbz (green dash,excited 345nm), **2** (orange dot, excited 335nm), dfpbz (red, excited 330nm) and dtbpbz (blue dash, excited 345nm), in degassed dichloromethane at room temperture (uncorrected).

Fig. S13. (a) The emission decay curves of **1** (green dot) and **3** (blue dot) in the degassed dichloromethane at room temperature. (b) The emission decay curves of **1** as synthesis (green, 36 μs (88%), 7.8 μs (12%)) in solid state. (c) The emission decay curves of **2** (red, 9.8 μs (80%), 2.5 μs (20%)) in solid state.

(d) The emission decay curves of **3** (blue, 14 μ s (96%), 1.4 μ s (4%)) in solid state.

(e) The emission decay curves of grinding 1 (G₁) (light blue, 12.2 μs (72%), 4.0 μs (28%)) in solid state. (f) The emission decay curves of grinding 2 (orange, 5.8 μs (87%), 0.82 μs (13%)) in solid state. (g) The emission decay curves of grinding 3 (dark blue, 9.2 μs (37%), 3.3 μs (63%)) in solid state.

Fig. S14. (a) Emission spectrum of 1 at 0 min (blue), 10 min later (red), 30 min later (green), and 1 h later (purple) in the degassed dichloromethane at room temperature. (b)
Emission spectrum of 3 at 0 min (blue), 15min later (red), 30min later (green) and 1h later (purple) in the degassed dichloromethane at room temperature.

Fig. S15. CIE graph of **1** (0.29, 0.43), **2** (0.16, 0.16), **3** (0.15, 0.10) and **G**₁ (0.22, 0.32) in the solid state.

Fig. S16. Kohn-Sham orbitals of **1** (upper), **2**⁺(centre) and **3**⁺ (lower). Orbitals calculated based on the optimized structure in the S₀ (singlet ground) states (contour value 0.02).

	<i>k</i> r	k _{nr}
	/10 ⁴ s ⁻¹	/10 ⁴ s ⁻¹
1	1.6	89
3	1.5	14

Table S1. k_r (= Φ/τ) and k_{nr} (=(1- Φ)/ τ) value of **1** and **3** measured in degassed CH₂Cl₂ solution.

Table S2. Important bond lengths and angles of the optimized structure of 1 and 2

	•		-	-		
	Ag-C (Å)	Ag-P1 (Å)	Ag-P2 (Å)	C-Ag-P1 (°)	C-Ag-P2 (°)	P1-Ag-P2 (°)
1	2.156	2.541	2.563	142.43	138.29	79.27
2	2.153	2.545	2.559	141.85	138.93	79.18

)	-)	•		
wai	velength,	oscillator s	strength (ƒ), compon	ents of the tra	nsitions.			
Sing	lets calcula	ted using sing	glet-optimized structure:	S	Triplets calculat	ted usi	ing singlet-optimized structures	
	λ/nm	f	Components	Coefficients	λ/nm	f	Components	Coefficients
7	321	0.0145	номо -> LUMO	0.664	370	0	HOMO-16 -> LUMO	0.116
			HOMO -> LUMO+1	0.173			HOMO -> LUMO	0.377
	315	0.0416	номо -> LUMO	-0.179	364	0	HOMO-1 -> LUMO+4	-0.155
			HOMO -> LUMO+1	0.668			HOMO -> LUMO+2	0.414
	288	0.1411	HOMO -> LUMO+2	0.657				
			HOMO -> LUMO+3	-0.164				
7	320	0.023	HOMO LUMO	0.595	370	0	HOMO -> LUMO	0.238
			HOMO -> LUMO+1	0.341			HOMO -> LUMO+1	0.353
	315	0.0349	номо -> LUMO	-0.347	360	0	HOMO -> LUMO+2	0.381
			HOMO -> LUMO+1	0.596			HOMO -> LUMO+3	0.132
m	327	0.007	номо -> LUMO	0.695	374	0	HOMO -> LUMO	0.389
	318	0.0302	HOMO -> LUMO+1	0.700			HOMO -> LUMO+1	-0.138
	287	0.0243	HOMO -> LUMO+2	0.678	368	0	HOMO-1 -> LUMO+12	-0.109
			HOMO -> LUMO+3	-0.125			HOMO -> LUMO+3	0.339

 Table S3.
 TDDFT results of singlets and triplets calculated using singlet-optimized structures. Calculated transition