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Scheme S1. The ligands PEIPH2 and PIPH2 employed in this study and some representative 

examples of tritopic ligands consisting of a pyridyl and an isophthalic acid moieties.
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Figure S1. Power X-ray diffraction patterns for Cu-PEIP.

Figure S2. Power X-ray diffraction patterns (experimental) for Cu-PEIP and Cu-PIP.
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Figure S3. FTIR spectra for Cu-PEIP.

Figure S4. FTIR spectra for Cu-PEIP and Cu-PIP.

4



 Figure S5: The deconstruction of the underline network of Cu-PEIP. 

Figure S6. The trinodal net of Cu-PEIP down to a axis. 
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Figure S7. The trinodal net of Cu-PEIP down to b axis. 

Figure S8. The trinodal net of Cu-PEIP down to c axis. 
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Figure S9. TGA curve of Cu-PEIP.

Figure S10. TGA curve of Cu-PIP. 
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Figure S11. Argon adsorption isotherm of Cu-PEIP recorded at 87 K and the corresponding 

NLDFT fitting.
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Low pressure CO2, N2 and CH4 sorption isotherms, determination of heat of adsorption and 
selectivity (CO2/N2, CO2/CH4) calculations using IAST.

Heat of adsorption. To calculate heats of adsorptions, the corresponding adsorption isotherms 
at different temperatures were simultaneously fitted using the virial type1 Equation 1:
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The heat of adsorption at zero coverage was calculated from Equation 2, where as a function of 
surface coverage, from Equation 3:
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For the determination of the isosteric heat of adsorption using the Clausious Clapeyron 
equation a commercially available software, ASiQwin (version 3.01) purchased from 
Quantachrome, was used.

Gas selectivity using IAST. The corresponding calculations were performed according to an 
established procedure.2 Specifically, the single-component adsorption isotherms were 
described by fitting the data with the following virial-type equation:
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where p is the pressure in Torr, n is the adsorbed amount in mmol g-1, K is the Henry constant in 
mmol g-1 Torr-1 and ci are the constants of the virial equation.
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The free energy of desorption at a given temperature and pressure of the gas is obtained from 
the analytical integration of eq. (4):
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The free energy of desorption is a function of temperature and pressure G(T,p) and describes 
the minimum work (Gibbs free energy) that required to completely degas the adsorbent 
surface.

For a binary mixture of component i and j eq. (5) yields the individual pure loadings and  at 𝑛0𝑖 𝑛0𝑗

the same free energy of desorption:

(6)𝐺0𝑖(𝑛0𝑖) = 𝐺0𝑗(𝑛0𝑗)

The partial pressure of component i and j in an ideal adsorption mixture is given by the 
following equations:
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where yi (=1-yj) and xi (=1-xj) is the molar fraction of component i in the gas phase and the 

adsorbed phase respectively and , is the pure component pressure of i and j respectively. 𝑝0𝑖 𝑝0𝑗

From eq. (6)-(8) and (3), the selectivity for the adsorbates i and j (Si,j) and the total pressure (p) 
of the gas mixture were calculated from eq. (9) and eq. (10), respectively.
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Figure S12. Virial type fitting of CO2 adsorption isotherms of Cu-PEIP at 273 K and 298 K 
according to equation 1.
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Figure S13. Virial type fitting of CH4 adsorption isotherms of Cu-PEIP at 273 K and 298 K 
according to equation 1.

Figure S14. CH4 isosteric heat of adsorption (Qst) of Cu-PEIP as a function of surface coverage, 
calculated from a virial-type analysis. The corresponding Clausius-Clapeyron calculation is 
shown with the solid line.

Table S1. Comparison of Cu-PEIP with selected MOFs in terms of BET surface area, 
crystallographic density and total CH4 uptake at 65 bar, working capacity (5-65 bar) at 298 K and 
isosteric heat of adsorption.

Material

BET 
area

m2 g-1

Crystal 
density

g cm-3

Total 
gravimetric 

uptake

g g-1

Total 

volumetric 
uptake

cm3 cm-3

Gravimetric 
working

capacity

g g-1

Volumetric 
working

capacity

cm3 cm-3

Qst0

kJ mol-1

Cu-PEIP 1785 0.645 0.166 176 0.119 125 21.2

MAF-38 2022 0.761 0.247 263 0.176 187 21.6

Ni-MOF-743 1350 1.195 0.148 251 0.077 129 21.4
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UTSA-764 2820 0.699 0.263 257 0.201 197 15.4

NU-1115 4930 0.409 0.360 205 0.313 177 14.2

HKUST-16 1850 0.881 0.216 267 0.154 190 17

PCN-146 2000 0.819 0.197 230 0.136 157 18.7

NU-11006 4020 0.467 0.270 180 0.24 160 13.7

Table S2. Comparison of Cu-PEIP with selected MOFs in terms of total CH4 uptake, and working 
capacity between 5-35 bar and 5-80 bar at 298 K.7 

Surface area,

m2 g-1

Material
BET

Langm

uir

Density,

g cm-3

Total

uptak

e at

35 

bar,

cm3 

cm-3

Total

uptak

e at

80 

bar,

cm3 

cm-3

Total

uptak

e at

80 

bar,

g g-1

Workin

g

capacity

at 35 

bar,

cm3 cm-

3

Workin

g

capacity

at 80 

bar,

cm3 cm-

3

Workin

g

capacity

at 80 

bar,

g g-1

Cu-PEIP 1785 1814 0.762 150 187 0.176 99 136 0.129

MAF-38 2022 2229 0.761 226 273 0.256 150 197 0.185

MOF-520 3290 3930 0.586 162 231 0.282 125 194 0.237

Ni-MOF-74 1350 1438 1.195 230 267 0.160 115 152 0.091

HKUST-1 - 1977 0.881 225 272 0.221 153 200 0.162

PCN-14 - 2360 0.819 200 250 0.218 128 178 0.155
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AX-21 - 4880 0.487 153 222 0.326 103 172 0.252
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Figure S15. Hydrogen sorption isotherms of Cu-PEIP recorded at 77 K and 87 K.

Figure S16. Virial type fitting of H2 adsorption isotherms of Cu-PEIP at 77 K and 87 K according 
to equation 1.
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Figure S17. Hydrogen isosteric heat of adsorption (Qst) of Cu-PEIP as a function of surface 
coverage, calculated from a virial-type analysis. The corresponding Clausius-Clapeyron 
calculation is show with the solid line.

Figure S18. High pressure H2 adsorption isotherm (up to 100 bar) of Cu-PEIP recorded at 77 K.
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