Supporting Information

A chiral metal-organic framework with polar channels: unique

interweaving six-fold helices and high CO₂/CH₄ separation

Bo Liu,^{a,b} Hui-Fang Zhou,^b Lei Hou,*^b Zhonghua Zhu,^c Yao-Yu Wang^b

^aCollege of Science, Northwest A&F University, Yangling, 712100, P. R. China. ^bKey Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi'an 710069, P. R. China. E-mail: lhou2009@nwu.edu.cn ^cSchool of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia.

Fig. S1 The solid-state CD spectra for 1.

Fig. S2 $\pi \cdots \pi$ stacking in 1, the vertical distance of adjacent pyridyl ring and isophthalate subunit is 3.367 Å, measured between the atoms of C8 and C10.

Fig. S3 TGA curves for as-synthesized, desolvated, and resolvated samples of 1.

Fig. S4 IR spectras for as-synthesized and desolvated sample of 1.

Fig. S5 PXRD patterns of simulated, as-synthesized and desolvated sample of 1.

Fig. S6 Incremental surface area as a function of pore width for 1a calculated from the adsorption branch of 77 K N₂ using the NLDFT model.

IAST adsorption selectivity calculation:

The experimental isotherm data for pure CO_2 and CH_4 (measured at 298 K) were fitted using a dual Langmuir-Freundlich (L-F) model:

$$q = \frac{a_I * b_I * P^{1/cI}}{1 + b_1 * P^{1/c1}} + \frac{a_2 * b_2 * P^{1/c2}}{1 + b_1 * P^{1/c1}}$$

Where q and p are adsorbed amounts and pressures of component i, respectively.

The adsorption selectivities for binary mixtures of CO₂/CH₄ and CO₂/N₂, defined by

$$S_{i/j} = \frac{x_i * y_j}{x_j * y_i}$$

were calculated using the Ideal Adsorption Solution Theory (IAST) of Myers and Prausnitz. Where x_i is the mole fraction of component i in the adsorbed phase and y_i is the mole fraction of component i in the bulk.

Fig. S7 CO₂ adsorption isotherms of **1a** with fitting by L-F model: a1 = 16.94769, b1 = 0.00227, c1 = 0.74336, a2 = 0.92357, b2 = 0.10130, c2 = 1.05120, Chi[^]2 = 3.33396×10^{-5} , R[^]2 = 0.999991; CH₄ adsorption isotherms of **1a** with fitting by L-F model: a1 = 0.05234, b1 = 0.04531, c1 = 1.34452, a2 = 1.09434, b2 = 0.00152, c2 = 1.26334, Chi[^]2 = 1.62179×10^{-7} , R[^]2 = 0.999999.

Calculation of sorption heat for CO₂ uptake using Virial 2 model

$$\ln P = \ln N + 1/T \sum_{i=0}^{m} aiN^{i} + \sum_{i=0}^{n} biN^{i} \qquad Q_{st} = -R \sum_{i=0}^{m} aiN^{i}$$

The above equation was applied to fit the combined CO_2 isotherm data for desolvated **1a** at 273, 285 and 298 K, where *P* is the pressure, *N* is the adsorbed amount, *T* is the temperature, *ai* and *bi* are virial coefficients, and *m* and *n* are the number of coefficients used to describe the isotherms. Q_{st} is the coverage-dependent enthalpy of adsorption and *R* is the universal gas constant.

Fig. S8 Virial analysis of the CO₂ sorption data (273, 285 and 298 K, at 1 atm) for 1a.

Fig. S9 Isosteric heat of CO_2 for 1a.

GCMC Simulation Methodlody

Grand canonical Monte Carlo (GCMC) simulations were performed for the adsorption of CO_2 in **1a** at 298 K by the Sorption module of Material Studio.¹ The framework and CO_2 molecule were considered to be rigid. The partial charges for carbon and oxygen atoms of CO_2 molecules were 0.576*e* and -0.288*e*, respectively.² The partial charges for atoms of **1a** were derived from QEq method and QEq_neutral1.0 parameter (Table S2). One unit cell was used during the simulations. The interaction energies between CO_2 and framework were computed through the Coulomb and Lennard-Jones 6-12 (LJ) potentials. All parameters for CO_2 molecule and atoms of **1a** were modeled with the universal forcefield (UFF) embedded in the MS modeling package. A cutoff distance of 12.5 Å was used for LJ interactions, and the Coulombic interactions were calculated by using Ewald summation. For each run, the 5 × 10⁶ maximum loading steps and 1×10⁷ production steps were employed.

References

- Accelrys, Materials Studio Getting Started, release 5.0; Accelrys Software, Inc.: San Diego, CA, 2009.
- (2) A. Hirotani, K. Mizukami, R. Miura, H. Takaba, T. Miya, A. Fahmi, A. Stirling, M. Kuboand, A. Miyamoto, *Appl. Surf. Sci.*, 1997, **120**, 81–84.

Fig. S10 Density contours of CO_2 adsorption in the pores of **1a** obtained from GCMC simulations at 298 K under pressure 0.1 kPa (a) and 100 kPa (b), respectively.

empirical formula	C ₂₅ H ₂₅ CuN ₃ O ₈
formula weight	559.02
crystal system	Trigonal
space group	P3 ₁ 2 ₁
T (K)	296(2)
<i>a</i> (Å)	22.4258(16)
<i>b</i> (Å)	22.4258(16)
<i>c</i> (Å)	10.9190(15)
α (deg)	90
β (deg)	90
γ (deg)	120
$V(Å^3)$	4755.6(8)
Ζ	6
$D_c/g \cdot cm^{-3}$	1.171
μ/mm^{-1}	0.732
reflns collected	25299
reflns unique	6211
<i>R</i> (int)	0.0400
GOF	1.045
$R_1^a, wR_2^b [I > 2\sigma(I)]$	0.0803, 0.2218
R_1, wR_2 (all data)	0.0875, 0.2286
Flack parameter	0.12(3)

 Table S1 Crystal Data and Refinement Results for 1.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|) / \Sigma |F_{o}|; {}^{b}wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$

Cu1	4.09328	C9	0.180654	H3B	0.266463
Cu2	4.08499	C10	-0.0940951	H5	0.165829
N1	-0.350699	C11	-0.145150	H7	0.134186
N2	-0.740649	C12	-0.135383	H10	0.102208
N3	-0.771971	C13	0.175235	H11	0.128473
01	-0.703096	C14	0.00242796	H12	0.0948875
02	-0.686856	C15	-0.137768	H15	0.130874
03	-0.707388	C16	-0.0226645	H17	0.180816
O4	-0.692748	C17	-0.125944	H19	0.105114
05	-0.683639	C18	-0.00463972	H22A	0.198510
06	-0.697394	C19	-0.172015	H22B	0.148480
07	-0.694135	C20	0.395671	H22C	0.136154
08	-0.697622	C21	0.385468	H23A	0.172598
C1	0.389721	C22	-0.403951	H23B	0.186650
C2	-0.0168210	C23	-0.444410	H23C	0.159782
C3	-0.178901	C24	-0.392220	H24A	0.164466
C4	-0.0249610	C25	-0.371810	H24B	0.185389
C5	-0.119213	H2A	0.338814	H24C	0.143638
C6	0.0121158	H2B	0.269841	H25A	0.159154
C7	-0.133158	H3	0.128054	H25B	0.139772
C8	0.388314	H3A	0.300550	H25C	0.189858

 Table S2 The atomic partial charges (e) in 1a.