Supporting Information

Surfactants As Additives Make the Structures of Organic–Inorganic Hybrid Bromoplumbates Diverse

Guangfeng Liu,^{†,§} Jie Liu,^{‡,§} Xutang Tao[‡], Dong-sheng Li,^{*,⊥} and Qichun Zhang^{*,†,#}

[†]School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore. Email: qczhang@ntu.edu.sg

[‡]State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China

^LCollege of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443002, P. R. China. Email:lidongsheng1@126.com

[#]Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

[§]These two authors have equal contribution to this paper.

Contents:

Materials and Methods

Figures S1 to S4

Table S1 and S2

Materials and Methods:

4,4'-bipyridine, PbBr₂, HBr aqueous solution (> 45%), CH₃OH, PVP (average molecular weight 10000), SDS and PEG-400 were purchased from Sigma-Aldrich Company. All starting materials are analytical-grade and were used as received without further purification.

To synthesize compound **1**, a mixture of PbBr₂ (0.54 mmol, 200 mg) and 4,4'bipyridine (0.64 mmol, 100mg) was heated with HBr (> 45%, 1.5 ml) and CH₃OH (5 ml) in 25 ml Teflon-lined stainless-steel autoclaves at 120 °C for 5 days. Upon cooling to room temperature at 10 K h⁻¹, red prismatic crystals of **1** were obtained in 61% yield (based on PbBr₂). To synthesize the compound **2**, **3**, and **4**, all of the synthetic conditions (including raw materials qualities, reaction temperatures, reaction times, cooling rate and Teflon tank volume) are kept consistent with the reaction route for preparation **1**, only except that different surfactants (PVP, SDS and PEG-400) were chosen as additives to induce crystal growth. The addition amounts of surfactants PVP, SDS and PEG-400 for the preparation of compounds **2-4** (also see Table S1) are 1g, 1g and 1ml respectively, respectively. The yields for **2-4** are 52%, 51% and 10%, respectively (based on PbBr₂).

For comparison, we chose 100 °C and 80 °C as the reaction temperatures next for all routes and kept raw materials, surfactants and other crystallization parameters as same with the 120 °C experiments. At the 100 °C experiments, the results shown that the yields for 1 and 2 are dramatically decreased (about 15% for 1 and about 20% for 2) and the yield for 4 is about 15%; we didn't obtain the compound 3 at this temperature. At the 80 °C experiments, all routes didn't produce any crystals of 1-4.

Single-crystal X-ray diffraction. Suitable **1-4** single-crystals were selected for single-crystal X-ray data collection with a Bruker SMART APEX-II CCD area detector on a D8 goniometer. All data were collected using graphite-monochromated and 0.5 mm-Mono Cap-collimated Mo- $K\alpha$ radiation ($\lambda = 0.71073$ Å) with the ω scan method.¹ Data were processed with the SAINT program of the APEX2 software for reduction and cell refinement. Multi-scan absorption corrections were applied by using the SADABS program for area detector. All structures were solved by the direct method and refined by the full-matrix least-squares method on F^2 (SHELX-97).² All non-H atoms were refined anisotropically. Hydrogen atoms were placed in idealized positions and included as riding with U_{iso} (H) = 1.2 U_{eq} (C). Crystallographic data and structural refinements are summarized in Table S2. Additional information in the form of CIF has also been supplied as Supporting Information.

Powder x-ray diffraction. The phase identity and purity of crystalline samples 1-4 were verified by power X-ray diffraction (PXRD) on a Bruker-AXS D8 ADVANCE X-ray diffractometer equipped with Cu $K\alpha$ radiation ($\lambda = 1.54056$ Å) in the 20 range of 9–50°, with a step size of 0.02° and scan-speed of 0.2 sec/step at room temperature.

UV-Vis spectra. Absorption data were collected on a Hitachi U-4100 UV-vis-NIR

spectrophotometer equipped with an integrating sphere operating in di□use-reflectance mode at 298 K For crystalline samples 1-4.

FT-IR spectroscopy. The attenuated total reflectance Fourier transform infrared spectra (ATR-FTIR) of crystalline **1-4** samples were recorded on a Thermo-Nicolet Nexus 670 spectrometer in the range of 700-4,000 cm⁻¹ at room temperature.

Thermal Measurement. Thermogravimetric and differential scanning calorimetry synergetic tests (TGA-DSC) for **1-4** is carried out on a TGA/DSC/1600HT analyzer (METTLER TOLEDO Instruments). The samples were placed in Al_2O_3 crucible, and heated at a rate of 10 K· min⁻¹ from room temperature to 490 °C under flowing nitrogen gas.

Fig S1. The dihedral angles between two N-methylate pyridine rings for 1-4 are as following: **1**: 0°; **2**: 27.79 and 31.02°; **3**: 25.94°; **4**: 2.18°.

Fig S2. Simulated and experimental XRD powder patterns for 1-4.

Fig S3 The FT-IR spectra and partial enlarged details for 1-4.

Fig S4. The TGA-DSC curves for the compounds 1-4

	1	2	3	4
4,4'-bpy	0.1 g	0.1 g	0.1 g	0.1 g
	(0.64 mmol)	(0.64 mmol)	(0.64 mmol)	(0.64 mmol)
PbBr ₂	0.2 g	0.2 g	0.2 g	0.2 g
	(0.54 mmol)	(0.54 mmol)	(0.54 mmol)	(0.54 mmol)
HBr	1.5 ml (>45%)	1.5 ml (>45%)	1.5 ml (> 45%)	1.5 ml (>45%)
CH ₃ OH	5 ML	5 ML	5 ML	5 ML
Surfactant	None	PVP	SDS 1g	PEG-400 (1ML)
		(average		
		molecular		
		weight: 10000)		
		1g		
Reaction	120 °C	120 °C	120 °C	120 °C
temperature	100 °C	100 °C	100 °C	100 °C
	80 °C	80 °C	80 °C	80 °C
Reaction	5 days	5 days	5 days	5 days
time				
Cooling	10 °C/h	10 °C/h	10 °C/h	10 °C/h
rate				
Teflon tank	25 ML	25 ML	25 ML	25 ML
volume				

Table S1. Crystallization parameters in the routes 1-4

	1	2	3	4
<i>T</i> (K)	296	296	296	296
Formula	C ₆ NH ₇ PbBr ₃	C ₆ NH ₇ PbBr ₃	$(C_{12}N_2H_{14})_2Pb_7Br_{18}$	$(C_{12}N_2H_{14})_2Pb_3Br_{10}$
Formula	540.05	540.05	3261.21	1793.17
weight				
Crystal	Monoclinic	Triclinic	Triclinic	Monoclinic
system				
Space	$P2_1/c$	Р	Р	<i>C</i> 2/m
group				
Ζ	4	4	1	2
<i>a</i> (Å)	4.3566 (7)	8.0898(6)	9.7421(6)	18.748(3)
<i>b</i> (Å)	21.531(3)	12.4533(9)	12.9277(8)	9.5035(16)
<i>c</i> (Å)	11.0429(17)	22.9102(16)	13.2958(8)	12.453(2)
α (deg)	90	82.1090(10)	116.0700(10)	90.00
β (deg)	91.093(2)	89.5550(10)	110.7090(10)	110.850(2)
γ (deg)	90	76.3130(10)	90.9180(10)	90.00
$V(Å^3)$	1035.7(3)	2220.6(3)	1377.36(15)	2073.5(6)
ρ calcd	3.463	3.231	3.932	2.872
(g/cm^3)				
λ (Μο Κα)	0.71073	0.71073	0.71073	0.71073
(Å)				
Collected	11594	25698	15048	5952
reflns				
Unique	2383	9710	5612	2243
reflns				
Parameters	101	401	243	111
<i>R</i> (int)	0.0411	0.0463	0.0525	0.0699
$R_1 [I >$	0.0273	0.0331	0.0365	0.0490
$2\sigma(I)$]				
$wR_2 [I >$	0.0669	0.0667	0.0874	0.1153
$2\sigma(I)$]				
GOF	1.099	0.995	1.009	0.996

 Table S2. Crystallographic data and structure refinement parameters of 1-4

References:

- 1. APEX2 (version 2009.9); Bruker AXS Inc., (Madison, WI, 2009).
- 2. G. M. Sheldrick, A short history of SHELX. Acta.crystallogr. A64, 112 (2008).