Supporting Information Synthesis, Crystal Structure and Spectroscopic Studies of a Series of Hexavanadate Hybrids with Multiple Functional Groups

Bo Huang, ^a Zicheng Xiao, ^a Baolin Wu, ^a Xiaokang Hu, ^a Xunliang Hu, ^a Pingfan Wu ^a *, Yongge Wei ^{a,b} *

^aInstitute of POM-based Materials, Hubei University of Technology, Wuhan 430068, China
^bDepartment of Chemistry, Tsinghua University. Beijing 100084, China

FT-IR spectra of compounds 2-4

Figure S1. FT-IR spectroscopy studies of compound 2.

Figure S2 .FT-IR spectroscopy studies of compound 3.

Figure S3. FT-IR spectroscopy studies of compound 4.

¹H NMR spectra of compounds 2-4

Figure S4. ¹H NMR spectra of compound **2** in d_6 -DMSO.

Figure S5. ¹H NMR spectra of compound **3** in d_6 -DMSO.

Figure S6. ¹H NMR spectra of compound **4** in d_6 -DMSO.

* In all the spectra, the solvent d_6 -DMSO gives a singlet at 2.5 ppm and the water gives a singlet at 3.3 ppm.

UV-vis spectra of compounds 2-4

Figure S7. UV-vis spectra of compound 2 in MeCN.

Figure S8. UV-vis spectra of compound 3 in MeCN.

Figure S9. UV-vis spectra of compound 4 in MeCN.

Figure S10. Thermogravimetric curves for compound 1.

*The loss of solvent molecules in the crytal of compound ${\bf 1}$ shows in the temperature range 35 \sim 50 °C.

Selected Bond Length(Å) and Angle(°)

Table 1. Selecte	the Two Isom	ers of Compound 4	ipounus 2-5 anu	
	Con	npound 2		
V(1)—O(1)	2.233(9)	V(1)—O(6)	1.833(3)	
V(1)—O(2)	2.017(3)	V(1)—O(7)	1.819(3)	
V(1)—O(5)	2.017(3)	V(1)—O(8)	1.591(3)	
V(2)—O(1)	2.240(9)	V(2)—O(5)	2.008(3)	
V(2)—O(3)	2.021(3)	V(2)—O(7)	1.812(3)	
V(2)—O(4)	1.815(3)	V(2)—O(9)	1.590(3)	
V(3)—O(1)	2.243(10)	V(3)—O(4)	1.831(3)	
V(3)—O(2)	2.023(3)	V(3)—O(6)	1.807(3)	
V(3)—O(3)	2.018(3)	V(3)—O(10)	1.599(3)	
C(2)—O(2)	1.423(5)	C(6)—O(11)	1.273(8)	
C(3)—O(3)	1.423(6)	C(6)—O(12)	1.201(9)	
C(4)—O(5)	1.425(6)	C(6)—C(7)	1.497(12)	
C(5)—O(11)	1.433(6)	C(7)—C(8)	1.342(8)	
		C(7)—O(9)	1.463(8)	
C(8)—C(7)—C(9)	123.5(12)	C(6)—C(7)—C(8)	121.9(9)	
	Com	pound 3		
V(1)—O(2)	1.604(2)	V(1)—O(6)	1.879(2)	
V(1)—O(4)	2.244(5)	V(1)—O(8)	1.986(2)	
V(1)—O(5)	1.792(2)	V(1)—O(10)	2.028(2)	
V(2)—O(1)	1.612(2)	V(2)—O(7)	1.801(2)	
V(2)—O(4)	2.234(5)	V(2)—O(9)	2.047(2)	
V(2)—O(5)	1.854(2)	V(2)—O(10)	1.996(2)	
V(3)—O(3)	1.620(2)	V(3)—O(7)	1.845(2)	
V(3)—O(4)	2.251(5)	V(3)—O(8)	2.052(2)	
V(3)—O(6)	1.776(2)	V(3)—O(9)	2.007(2)	
C(1)—O(8)	1.441(4)	C(7)—C(8)	1.404(5)	
C(2)—O(9)	1.433(4)	C(7)—C(12)	1.393(6)	
C(3)—O(10)	1.441(4)	C(11)—C(12)	1.394(6)	
C(5)—O(11)	1.448(4)	C(12)—C(13)	1.501(5)	
C(6)—O(11)	1.311(5)	C(13)—O(13)	1.181(5)	
C(6)—O(12)	1.215(5)	C(13)—O(14)	1.340(5)	
C(6)—C(7)	1.510(6)			
C(6)—C(7)—C(12)	123.1(4)	C(7)—C(12)—C(1	13) 119.5(4)	
	Con	npound 4		
V(1)—O(2)	1.828(2)	V(1)—O(5)	1.610(2)	
V(1)—O(3)	2.250(6)	V(1)—O(8)	2.023(2)	
V(1)—O(4)	1.826(2)	V(1)—O(10)	2.020(2)	

Table 1: Selected Bond Length(Å) and Angle(°) for Compounds 2-3 and

V(2)—O(1)	1.811(2)	V(2)—O(7)	1.620(2)
V(2)—O(2)	1.821(2)	V(2)—O(8)	2.027(2)
V(2)—O(3)	2.243(5)	V(2)—O(9)	2.026(2)
V(3)—O(1)	1.843(2)	V(3)—O(6)	1.607(2)
V(3)—O(3)	2.239(5)	V(3)—O(9)	2.007(2)
V(3)—O(4)	1.825(2)	V(3)—O(10)	2.024(2)
C(1)—O(9)	1.433(4	4)	C(5)—O(11)	1.447(5)
C(2)—O(8)	1.431(4	4)	C(6)—O(11)	1.278(5)
C(4)—O(10)	1.435(4	4)	C(6)—O(12)	1.165(6)
C(6)—C(7)	1.519(7)			
C(7)—C(8A)	1.556(9)	C(7)—C(8B)	1.518(1	2)
C(7)—C(12A)	1.594(8)	C(7)—C(12B)	1.413(1	2)
C(8A)—C(9A)	1.451(17)	C(8B)—C(9B)	1.810(2)
C(9A)—C(10A)	1.307(17)	C(9B)—C(10B)	1.150(2)
C(10A)—C(11A)	1.464(14)	C(10B)—C(11B)	1.410(2)
C(11A)—C(12A)	1.491(12)	C(11B)—C(12B)	1.478(1	8)
C(12A)—C(13A)	1.464(11)	C(12B)—C(13B)	1.537(1	7)
C(13A)—O(13A)	1.265(18)	C(13B)—O(13B)	1.253(1	7)
C(13A)—O(14A)	1.277(19)	C(13B)—O(14B)	1.249(1	5)
C(9A)—C(10A)—C(2	11A)	126.3(10)	C(10A)—C(11A)—C	C(12A)	111.8(8)
C(9B)-C(10B)-C(1	11B)	124.8(14)	C(10B)—C(11B)—C	(12B)	115.5(10)

Selected Torsion Angle (°)

Compound 2			
O(12)-C(6)-C(7)-C(8)	175.0(6)	O(12)-C(6)-C(7)-C(9)	1.2(3)
Compound 3			
O(12)-C(6)-C(7)-C(12)	55.2(7)	C(8)-C(7)-C(12)-C(11)	2.1(6)
O(13)-C(13)-C(12)-C(7)	22.7(6)	C(8)-C(9)-C(10)-C(11)	1.8(7)
C(6)-C(7)-C(12)-C(13)	11.0(6)		
Compound 4			
O(12)-C(6)-C(7)-C(12A)	-61.8(10)	C(8A)-C(7)-C(12A)-C(11A)	61.5(9)
O(13A)-C(13A)-C(12A)-C(7)	59.4(14)	C(8A)-C(9A)-C(10A)-C(11A)	3(2)
C(6)-C(7)-C(12A)-C(13A)	66.0(10)		
O(12)-C(6)-C(7)-C(12B)	-109.3(10)	C(8B)-C(7)-C(12B)-C(11B)	-168.8(10)
O(14B)-C(13B)-C(12B)-C(7)	135.0(13)	C(8B)-C(9B)-C(10B)-C(11B)	17(4)
C(6)-C(7)-C(12B)-C(13B)	-67.1(11)		