Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2016

Electronic Supplementary Information (ESI) for

Anisotropic Li⁺ ion conductivity in a large single crystal of a Co(III) coordination complex

Saet Byeol Kim,^{†,§} Jeung Yoon Kim,^{‡,§} Nak Cheon Jeong,^{*,‡} and Kang Min Ok^{*,†}

[†]Department of Chemistry, Chung-Ang University, Seoul 06974, Korea

[‡]Department of Emerging Materials Science, DGIST, Daegu 42988, Korea

*E-mail: kmok@cau.ac.kr (KMO); nc@dgist.ac.kr (NCJ).

Table of contents

Sections	Titles	pages
Section S1.	Materials and Methods	S2–S4
Section S2.	Crystal Structures of ACo(PDC) ₂ (A = Na ⁺ , K ⁺ , and H ₃ O ⁺)	S5–S7
Section S3.	PXRD data of ACo(PDC) ₂ (A = Li ⁺ , Na ⁺ , K ⁺ , and H ₃ O ⁺)	S8
Section S4.	Spectroscopic Characterization of $ACo(PDC)_2$ (A = Li ⁺ , Na ⁺ , K ⁺ , and H ₃ O ⁺): Nuclear Magnetic Resonance and Infrared Spectra	S9–S11
Section S5.	Thermal Analyses of ACo(PDC) ₂ (A = Li ⁺ , Na ⁺ , K ⁺ , and H_3O^+)	S12-S13
Section S6.	Conductivity Measurements of $LiCo(PDC)_2$ Single Crystal along the [100] and [001] Directions	S14
Section S7.	Orientation of LiCo(PDC) ₂ Crystals in Pellet Sample	S15
Section S8.	Redox Potentials and Conductivity Test of LiCo(PDC) ₂	S16-S18
Section S9.	Conductivity Measurements of ACo(PDC) ₂ (A = Na ⁺ , K ⁺ , and H ₃ O ⁺) Single Crystals	S19
Section S10.	Identification of Conductivity in LiCo(PDC) ₂	S20
Section S11.	Temperature-dependent Conductivity Measurements for LiCo(PDC) ₂	S21
References		S22

Section S1. Materials and Methods

Materials. All reagents were obtained from commercial sources (Sigma Aldrich or Alfa Aesar) and were used without further purification. Cobalt(II) nitrate hexahydrate (Co(NO₃)₂·6H₂O, Aldrich, 98%), lithium nitrate (LiNO₃, Aldrich, \geq 99%), sodium nitrate (NaNO₃, Aldrich, \geq 99%), potassium nitrate (KNO₃, Aldrich, \geq 99%), 2,6-pyridine-dicarboxylic acid (PDC, C₇H₅NO₄, Alfa Aesar, 98%), nitric acid (HNO₃, Aldrich, >70%), and distilled deionized water (DDW) were used for syntheses of Cobalt-PDC complexes in both single crystals and polycrystalline phases. Silver pastes (16040-30 fast-drying Ag paint, TED PELLA for microelectrodes; type A and B, Chemtronix for pellet samples) and copper wires (SPCP-001-500, diameter = 0.01 mm, OMEGA Engineering for microelectrodes; tin-coated copper wires, diameter = 0.25 mm, Arcor, for pellet samples) were used to prepare electrodes connected to single-crystal and pellet samples.

Syntheses of polycrystalline ACo(PDC)₂ (A = Li⁺, Na⁺, K⁺, and H₃O⁺). A 1.0 mmol portion of Co(NO₃)₂ (0.291 g) and 1.0 mmol of PDC (0.334 g) were dissolved in 1 mL of DDW. After continuous stirring for 30 min at room temperature, 0.5 mL of HNO₃ was added to the mixed solution. The transparent solution was introduced into a Teflon-lined autoclave and placed in an oven at 180 °C for 3 days. After cooling to room temperature, pure polycrystalline samples of $[H_3O^+]Co(PDC)_2$ were isolated by filtration. Polycrystalline samples of LiCo(PDC)₂, NaCo(PDC)₂, and KCo(PDC)₂ were also synthesized by the same synthetic procedures, with the substitution of 1.0 mmol of the respective MNO₃ (M = Li, Na, or K) in place of HNO₃. Table S1 summarizes the elemental microanalysis data for all title compounds.

Table S1. C, H, and N Content in $ACo(PDC)_2$ (A = Li⁺, Na⁺, K⁺, and H₃O⁺)

Sample	Carbon (%)		Hydro	gen (%)	Nitrogen (%)		
Sample	observed	calculated	observed	calculated	observed	calculated	
[H ₃ O ⁺]Co(PDC) ₂	41.29	41.30	1.98	1.98	6.84	6.88	
LiCo(PDC) ₂	38.29	38.71	2.32	2.38	6.35	6.45	
NaCo(PDC) ₂	37.53	37.52	2.21	2.25	6.25	6.25	
KCo(PDC) ₂	39.23	39.27	1.52	1.41	6.60	6.54	

Syntheses of ACo(PDC)₂ (A = Li⁺, Na⁺, K⁺, and H₃O⁺) single crystals. Large single crystals of ACo(PDC)₂ (A = Li⁺, Na⁺, K⁺, and H₃O⁺) were grown using procedures similar to the one described above, except that the amount of water was increased to 8 mL. To synthesize $[H_3O^+]Co(PDC)_2$ single crystals, a 1.0 mmol portion of Co(NO₃)₂ (0.291 g) and 1.0 mmol of PDC (0.334 g) were dissolved in 8 mL of DDW. After continuous stirring for 30 min at room temperature, 0.5 mL of HNO₃ was added to the mixed solution. The transparent solution was introduced into a Teflon-lined autoclave and placed in an oven at 180 °C for 3 days. After cooling to room temperature, the solvent was slowly evaporated under ambient conditions for several days. Single crystals of LiCo(PDC)₂, NaCo(PDC)₂, and KCo(PDC)₂ were also grown by the same procedure, with the substitution of 1.0 mmol of the respective MNO₃ (M = Li, Na, or K) in place of HNO₃. The crystal structures of all title compounds were determined by single-crystal X-ray diffraction (see below).

Preparation of pellets for conductivity measurements of LiCo(PDC)₂. Pellets for the conductivity measurements of LiCo(PDC)₂ were prepared with a thickness of ca. 2 mm by pressing polycrystalline samples in a pellet die (7 mm diameter) under a pressure of ca. 1 metric ton. The flat sides of the prepared pellets were connected electrically to an impedance spectrometer (or DC potentiostat) using tin-coated copper wires (diameter = 0.25 mm, Arcor) and conductive silver epoxy (type A and B, Chemtronix). Conductivity measurements were performed under ambient conditions at room temperature (ca. 20 °C) without supplying solvent or electrolyte.

Preparation of microelectrodes for conductivity measurements of single crystals. To examine the ionic conduction behaviors of ACo(PDC)₂ crystals (A = Li⁺, Na⁺, K⁺, and H₃O⁺), crystals of LiCo(PDC)₂ ($0.88 \times 1.97 \times 0.63 \text{ mm}^3$), NaCo(PDC)₂ ($0.54 \times 1.36 \times 2.71 \text{ mm}^3$), KCo(PDC)₂ ($1.40 \times 1.50 \times 0.75 \text{ mm}^3$), and [H₃O]Co(PDC)₂ ($1.05 \times 1.97 \times 0.83 \text{ mm}^3$) were connected electrically to an impedance spectrometer using thin copper wires (diameter = 0.01 mm, OMEGA Engineering) and conductive silver paint (TED PELLA). The connections were made along the [100], [010], and [001] axes for all crystals. All conductivity measurements were performed under ambient conditions at room temperature (ca. 20 °C) without supplying solvent or electrolyte. (See Figure S1.)

Figure S1. Optical microscope images of (a) a LiCo(PDC)₂ single crystal connected to the silver electrode along the [010] direction and (b) (010) facet.

Instrumentation. The crystal structures of the synthesized compounds were determined by a singlecrystal X-ray diffraction technique. The data were collected using a Bruker SMART BREEZE diffractometer equipped with a monochromatic graphite-filtered Mo K_{α} beam. Single crystals of LiCo(PDC)₂ (0.020 × $0.020 \times 0.133 \text{ mm}^3$), NaCo(PDC)₂ ($0.026 \times 0.026 \times 0.137 \text{ mm}^3$), KCo(PDC)₂ ($0.046 \times 0.046 \times 0.106 \text{ mm}^3$), and $[H_3O]Co(PDC)_2$ (0.010 × 0.025 × 0.048 mm³) were attached to glass fibers. The data were collected at 173 K. exposing the crystal samples to the X-ray beam for 10 seconds at every 0.3° rotation in omega. The collected X-ray intensities were integrated using SAINT software^{S1} with correction of polarization, Lorentz factor, and X-ray absorption attributed to air and sample vibration. The structures were solved and refined using the software SHELXS-97^{S2} and SHELXL-97,^{S3} respectively. All atoms except hydrogen atoms were refined anisotropically. All calculations were performed using the WinGX-98 crystallographic software package.⁵⁴ Crystallographic data for the reported compounds are given in Table S2. The phase purities of the synthesized compounds were examined by powder X-ray diffraction. PXRD patterns of the samples were obtained using a Bruker D8-Advance diffractometer with a monochromatic nickel-filtered Cu K_{α} beam at room temperature. Infrared spectra of the samples were recorded on a Thermo Scientific iS10 FT-IR spectrometer in attenuated total reflectance (ATR) mode. ¹H and ¹³C NMR spectra were recorded using a Varian VNS spectrometer (600 MHz for ¹H NMR and 151 MHz for ¹³C NMR). The samples were dissolved in D_2O prior to measurement of NMR spectra. Thermal gravimetric analyses (TGA) were performed using a TGA-N 1000 thermal analyzer (Scinco) under flowing argon. Impedance spectra of the single-crystal samples were recorded in the frequency range of 0.1–10⁷ using a SI1260 Impedance/Gain-Phase analyzer (Solartron Analytical). Measurements were performed under ambient condition at room temperature (ca. 20 °C). A microscope (S43T, Microscopes Inc.) was used in the process of sample preparation for impedance tests. The DDW used as the solvent in the syntheses of crystalline compounds was obtained from a water purification system (Merck Millipore, MQ Direct 8).

Section S2. Crystal Structures of $ACo(PDC)_2$ (A = Na⁺, K⁺, and H₃O⁺)

NaCo(PDC)₂ is a molecular compound that crystallizes in the monoclinic space group $P2_1/c$ (No. 14). The structure of NaCo(PDC)₂ comprises a Co³⁺ cation, two PDC ligands, and the Na⁺ cation. The unique Co³⁺ cation is surrounded by two N and four O atoms in the PDC ligands in the octahedral coordination environment. The Co–N and Co–O bond distances are in the ranges of 1.8392(15)–1.8439(16) and 1.9062(13)–1.9175(14) Å, respectively. As shown in Figures S2a and b, the PDC ligands in NaCo(PDC)₂ are aligned approximately parallel along the *b* and *c* axes due to π – π interactions. The observed distances of the two parallel pyridine rings are approximately 3.6 Å. The unique Na⁺ cation interacts with two water molecules and four oxygen atoms in the carboxylate of the PDC ligands with Na–O contact lengths of 2.2889(18)–2.7852(17) Å.

KCo(PDC)₂ and (H₃O)Co(PDC)₂ are isostructural molecular compounds that crystallize in the highly symmetric tetragonal space group $I4_1/a$ (No. 88). Thus, only the structural details of KCo(PDC)₂ will be provided here. The structure of KCo(PDC)₂ consists of a Co³⁺ cation, two PDC ligands, and a K⁺ cation. The unique Co³⁺ cation is in a six-coordinate distorted octahedral coordination environment with four O and two N atoms. The observed Co–O and Co–N bond distances are 1.922(2) and 1.839(4) Å, respectively. The carboxylate groups of the PDC ligand are connected to the Co³⁺ cation through the oxygen atom, O(1). The C(4)–O(1) and C(4)–O(2) bond lengths in the carboxylate groups of the 2,6-PDC ligands are 1.303(4) Å and 1.229(4) Å, respectively. Figure S2c presents a ball-and-stick and polyhedral representation of KCo(PDC)₂ in the *ac* plane. Interestingly, the PDC ligands are aligned approximately parallel to each other along the *a* and *b* axes. The observed distances between the two parallel pyridine rings of the PDC ligands are approximately 3.57 Å (see Figure S2c). The close contact distances indicate that significant parallel π – π interactions exist between the pyridine rings, although the rings are slightly deviated. The K⁺ ions are located between the Co-coordination compound. The observed K(1)–O(1) and K(1)–O(2) interaction lengths are 3.161(2) and 2.667(2) Å, respectively (see Figure S2d).

Figure S2. Ball-and-stick representations of NaCo(PDC)₂ in the (a) *bc* plane and (b) *ac* plane. (c) Ball-and-stick and polyhedral model of KCo(PDC)₂ in the *ac* plane. (d) The K⁺ ions are located between the Co-coordination compounds and interact with eight oxygen atoms. All hydrogen atoms are omitted for clarity.

Compound	LiCo(PDC) ₂	NaCo(PDC) ₂	KCo(PDC) ₂	$[H_3O]Co(PDC)_2$
fw	3474.90	448.16	428.24	407.15
crystal system	Monoclinic	Monoclinic	Tetragonal	Tetragonal
space group	<i>I2/a</i> (no. 15)	<i>P</i> 2 ₁ / <i>c</i> (no. 14)	/4 ₁ /a (no. 88)	/4 ₁ / <i>a</i> (no. 88)
a (Å)	21.3041(3)	14.0209(10)	6.9113(10)	7.0260(10)
b (Å)	14.3738(2)	9.5023(10)	6.9113(10)	7.0260(10)
c (Å)	21.3818(3)	12.8892(10)	28.4262(14)	27.891(3)
α()	90	90	90	90
в(9	92.286(10)	113.564(10)	90	90
Y(9	90	90	90	90
V (ų)	6542.34(14)	1574.1(3)	1357.8(4)	1376.8(4)
Ζ	2	4	4	4
λ (Å)	0.71073	0.71073	0.71073	0.71073
Т (К)	173.0(2)	173.0(2)	173.0(2)	173.0(2)
ρ _{calcd} (g·cm⁻³)	1.764	1.891	2.095	1.964
R(F) ^a	0.0370	0.0305	0.0397	0.0262
$R_w(R_o^2)^b$	0.0738	0.0695	0.1023	0.0706

Table S2. Crystallographic Data for ACo(PDC)₂ (A = Li, Na, K, and H₃O)

 ${}^{a}R(F) = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|.$ ${}^{b}R_{w}(F_{o}^{2}) = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w(F_{o}^{2})^{2}]^{1/2}.$

Accession Codes

CCDC 1476207—1476210 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Section S3. PXRD data of $ACo(PDC)_2$ (A = Li⁺, Na⁺, K⁺, and H₃O⁺)

Powder X-ray diffraction (PXRD) patterns of ACo(PDC)₂ (A = Li⁺, Na⁺, K⁺, and H₃O⁺) were obtained to confirm the phase purity of the synthesized compounds. The measured PXRD patterns were consistent with the data calculated from single-crystal diffraction (see Figure S3).

Figure S3. Experimental (red) and calculated (blue) PXRD patterns of (a) [H₃O]Co(PDC)₂, (b) LiCo(PDC)₂, (c) NaCo(PDC)₂, and (d) KCo(PDC)₂.

Section S4. Spectroscopic Characterization of $ACo(PDC)_2$ (A = Li⁺, Na⁺, K⁺, and H₃O⁺): Nuclear Magnetic Resonance and Infrared Spectra

To characterize the molecular structures of the synthesized crystals, nuclear magnetic resonance (NMR) and infrared (IR) spectroscopic data were obtained (see Figures S4 and S5, and Tables S3 and S4). The obtained spectra agreed well with the structures obtained from single-crystal X-ray diffraction. The vibration frequencies of Co–O and Co–N at ca. 665 and 590 cm⁻¹ in the IR spectra agree well with reported values in the literature (see Figure S5 and Tables S4).

Figure S4. (a) ¹H and (b) ¹³C NMR spectra of the $[H_3O]Co(PDC)_2$, LiCo(PDC)₂, NaCo(PDC)₂, and KCo(PDC)₂ complexes. The complexes were dissolved in D₂O for the measurements.

Commence		¹ H-NMR	¹³ C-NMR		
Compound	H atom	Chemical shift (ppm)	Integration ratio	C atom	Chemical shift (ppm)
[H ₃ O]Co(PDC) ₂	Ha	8.797	1.0	Ca	172.4
		8.784		Cp	129.5
		8.770		Cc	152.7
	Нp	8.541	1.9	Cd	143.8
		8.528		-	-
LiCo(PDC) ₂	Ha	8.800	1.0	Ca	172.4
		8.787		Cp	129.5
		8.774		Cc	152.7
	Hp	8.543	1.9	Cd	143.8
		8.530			
NaCo(PDC) ₂	Ha	8.802	1.0	Ca	172.4
		8.789		Cp	129.5
		8.776		Cc	152.7
	Hp	8.546	1.8	Cd	143.8
		8.532		-	-
KCo(PDC) ₂	Hª	8.800	1.0	Ca	172.4
		8.787		Cb	129.5
		8.774		Cc	152.7
	Hb	8.544	1.8	Cd	143.8
		8.831		-	-

Table S3. Characteristic Chemical Shifts of [H₃O]Co(PDC)₂, LiCo(PDC)₂, NaCo(PDC)₂, and KCo(PDC)₂ in ¹H and ¹³C NMR Spectra

Figure S5. Infrared spectra of [H₃O]Co(PDC)₂, LiCo(PDC)₂, NaCo(PDC)₂, and KCo(PDC)₂.

Table S4.	Vibration	Frequencies	of	Characteristic	Chemical	Bonds	in	the	$[H_3O]Co(PDC)_2$,
LiCo(PDC) ₂ ,	NaCo(PDC) ₂ , and KCo(PE)C)2	Complexes					

LICU(FDC)2, NaCO(FDC		Jinpiexes					
Vibration mode	Vibration frequencies (cm ⁻¹)						
VIDIATION MODE	[H ₃ O]Co(PDC) ₂	LiCo(PDC) ₂	NaCo(PDC) ₂	KCo(PDC) ₂			
v(H ₂ O)		3490-3360	3545-3460				
v(C-H)	3090-3040	3100-3050	3090-3040	3090-3040			
v(C=C), v(C=O)	1675-1605	1675–1630	1670–1620	1660–1620			
v(antisymmetric CO ₂)	1605-1580	1605–1570	1620–1560	1620–1550			
v(C-N)	1460	1470	1460	1465			
v(symmetric CO ₂)	1410	1417	1410	1415			
v(Co-O)	663	668	667	664			
v(Co-N)	585	594	589	585			

Section S5. Thermal Analyses of $ACo(PDC)_2$ (A = Li⁺, Na⁺, K⁺, and H₃O⁺)

To investigate the thermal stability of the reported materials, $ACo(PDC)_2$ (A = H₃O⁺, Li⁺, Na⁺, and K⁺), thermogravimetric analyses (TGA) and PXRD were performed. The TGA data for [H₃O]Co(PDC)₂ revealed that weight loss begins at a relatively high temperature of ca. 260 °C (see Figure S6). For $KCo(PDC)_2$, decomposition also begins at ca. 320 °C. We speculate that these high decomposition temperatures can be attributed to the strong binding of the H₃O⁺ and K⁺ ions to neighboring oxygen atoms in the PDC ligands. The TGA diagrams of LiCo(PDC)₂ and NaCo(PDC)₂ exhibit weight loss at lower temperatures of ca. 150 °C and 100 °C, respectively, due to the loss of occluded water molecules.

The presence of alkali metal ions in the samples was corroborated by examining the PXRD patterns for the calcined products. The resulting patterns agreed well with the simulated PXRD patterns of the corresponding oxides, such as Co_3O_4 , LiCoO₂, Na_{0.5}CoO₂, NaCoO₂, and KCoO₂ (see Figure S7).

Figure S6. TGA diagrams of (a) [H₃O]Co(PDC)₂, (b) LiCo(PDC)₂, (c) NaCo(PDC)₂, and (d) KCo(PDC)₂.

Figure S7. PXRD patterns (red) of the powders obtained after calcination of (a) $[H_3O]Co(PDC)_2$, (b) $LiCo(PDC)_2$, (c) $NaCo(PDC)_2$, and (d) $KCo(PDC)_2$ at 800 °C. The blue and black patterns represent the simulated PXRD results for (a) Co_3O_4 , (b) $LiCoO_2$, (c) $Na_{0.5}COO_2$ and $NaCoO_2$, and (d) Co_3O_4 and $KCOO_2$.

Section S6. Conductivity Measurements of $LiCo(PDC)_2$ Single Crystal along the [100] and [001] Directions

We observed ion conduction behavior of a LiCo(PDC)₂ single crystal measured along the [010] direction. We attributed this conduction to the presence of ion channels in the direction as a first requisite. We hypothesized that, by contrast, ion conduction is not observed the [100] and [001] directions because of the absence of such ion channels. Based on this hypothesis, we examined whether ion conduction occurs in the [100] and [001] directions. We prepared single crystal samples connected in the directions of [100] and [001] and performed EIS measurements on the samples. As expected, we did not observe an impedance signal. All data in the spectra were scattered completely, indicating a lack of ion conduction in the two directions (see Figure S8).

Figure S8. Typical impedance spectra of a $LiCo(PDC)_2$ single crystal connected in the direction of the (a) [100] and (b) [001] axes.

Section S7. Orientation of LiCo(PDC)₂ Crystals in Pellet Sample

We wondered if LiCo(PDC)₂ Crystals in pellet sample are aligned well or randomly oriented. To this end, we examined the PXRD of a pellet sample. For comparison, the diffraction patterns of powder and single crystal samples were also examined. In particular, the PXRD of the single crystal was taken with its specific orientations which are aligned parallel and perpendicular to the axis of goniometer movement, respectively. Whereas the single crystal exhibits specific diffraction peaks, the PXRD pattern of the pellet sample was same as that of the powder sample, in which crystallites must be randomly oriented (see Figure S9). Furthermore, the measured diffraction pattern of the pellet was identical to the simulated pattern of randomly oriented crystals.

Figure S9. XRD patterns of powder, pellet, single crystal samples of $[Li^+]$ -Co(PDC)₂. For comparison, the diffraction pattern of $[Li^+]$ -Co(PDC)₂ was also simulated using a Materials Studio software.

Section S8. Redox Potentials and Conductivity Test of LiCo(PDC)₂

We postulated that the central transition metal ion, Co^{3+} , should reversibly interchange its oxidation state to Co^{4+} simultaneous with the movement of the interstitial Li⁺ cation to compensate for the instantaneously broken charge balance between the cation and the molecular backbone. Thus, we determined the Co^{3+}/Co^{4+} redox potential by examining a methanol solution containing LiCo(PDC)₂ by electrochemical cyclic voltammetry (CV). We first dissolved LiCo(PDC)₂ powder in methanol at a concentration of 0.1 mM. Initially, we attempted to prepare the solution with an aprotic solvent, acetonitrile, to obtain an accurate redox potential by minimizing the solvent effect, but the compound did not dissolve in acetonitrile. Then, we added TBABF₄ (1 M) to the solution as an additive. The test was performed at a scan rate of 100 mV·s⁻¹.

The recorded CV data indicated two oxidation peaks at ca. -570 and 200 mV (see Figure S10). We attributed the former peak to oxidation from Co^{2+} to Co^{3+} and the latter to oxidation from Co^{3+} to Co^{4+} because the observed oxidation potentials were comparable to values reported in the literature within an acceptable range. Because the extraction of the Li⁺ ion from its position should lead to the oxidation of Co^{3+} to Co^{4+} , we speculate that the transport (or conduction) of the Li⁺ ion occurs at a redox potential of approximately 200 mV. Based on this speculation, we initially acquired the EIS of a LiCo(PDC)₂ single crystal (aligned to the [010] direction) at a fixed AC potential of 200 mV. However, we varied the DC potentials to 50, 200, and 3,000 mV to monitor a suitable DC potential for ion transport (see Figure S11 and Table S5). The results indicated that transport of Li⁺ ions can be maximized under the conditions of 200 mV AC. As expected, although the ion can move under conditions of 50 mV DC and 200 mV AC, the impedance spectra under these conditions were slightly scattered compared to those measured under the above conditions. The impedance spectrum measured at 1,000 mV DC, however, was completely scattered, indicating the absence of ionic conduction in the sample. Based on these results, we performed further EIS experiments with varying AC potentials but fixed DC potential at 200 mV (see the results in Figure 3 of the text).

Figure S10. Cyclic voltammograms of methanol solutions containing 0.1 mM LiCo(PDC). TBABF₄ was co-dissolved in the solution as an additive. The scan rate was 100 mV·s⁻¹.

Figure S11. Measured (open circles) and simulated (solid curves) electrochemical impedance spectra of a LiCo(PDC)₂ single crystal sample connected to silver microelectrodes in the direction of [010]. The measurements were performed under various DC potentials: (a) 50, (b) 200, and (c) 1,000 mV. The AC potential was fixed at 200 mV.

Table S5.	Conductiv	ities of LiCo(PDC) ₂	Samples		
Sample		DC potential ^a	R	σ	Ratio
Sample		(mV)	(M Ω cm)	(µS cm⁻¹)	
Bulk pellet		400	26.1	0.0383	1
Single crys	tal	50	0.159	6.27	164
in the	[010]	200	0.163	6.12	160
direction		1000	-	-	-

• • • ~`

^aMeasurements were performed at a fixed AC potential of 200 mV.

Figure S12. The impedance spectrum of a $LiCo(PDC)_2$ single crystal sample connected to silver microelectrodes in the direction of [010]. The measurement was performed without applied potential.

Section S9. Conductivity Measurements of ACo(PDC)₂ (A = Na⁺, K⁺, and H₃O⁺) Single Crystals

As described in the text, we predicted that no ion conduction would be observed in the single crystals of $[H_3O]Co(PDC)_2$, NaCo(PDC)_2, and KCo(PDC)_2 because of the absence of ion channels (in the NaCo(PDC)_2 crystal) or the strong binding of cations $(H_3O^+ \text{ and } K^+)$ to the surrounding oxygen atoms (in both the $[H_3O]Co(PDC)_2$ and KCo(PDC)_2 crystals). To demonstrate this prediction, we prepared large single crystal samples connected in the [100], [010], and [001] directions and subjected the samples to EIS measurements. In all experiments, we did not observe an impedance signal. All data points in the spectra were completely scattered. Figure S13 shows typical impedance spectra recorded from the $[H_3O]Co(PDC)_2$, NaCo(PDC)_2, and KCo(PDC)_2 single crystal samples.

Figure S13. Typical impedance spectra of (a) [H₃O]Co(PDC)₂, (b) NaCo(PDC)₂, and (c) KCo(PDC)₂ single crystals.

Section S10. Identification of Conductivity in LiCo(PDC)₂

Because the LiCo(PDC)₂ crystal contained occluded water molecules, the observed arcs in the impedance spectra may have been due to proton conduction, presumably via Grotthuss-type proton transfer between water molecules. To elucidate the origin of the arcs, the capacitance was extracted from the impedance spectra by fitting the spectra using Zview software. The dielectric constant (ε_r) was calculated according to the following equation:

$$C = \frac{\varepsilon_r \varepsilon_0 A}{d}$$

where C, ε_0 , A, and d are the capacitance, vacuum permittivity (8.85 \times 10⁻¹⁴ F·cm⁻¹), area, and thickness of the sample, respectively. The calculated dielectric constant for a bulk pellet and single crystal is 4163 units and 1001–1125 units, respectively, substantially greater than the reported dielectric constant of water, ca. 80 units (see Table S6).^{S10} Thus, the arcs obtained in the impedance spectra are attributable to the transport of Li⁺ ions rather than the occluded water molecules. Because such high dielectric constants (>100) are frequently observed in coordination polymers (including MOFs)^{S11-13} and ferroelectric materials, ^{S14-15} the high value of the extracted dielectric constant can be tentatively ascribed to the interaction of the Li⁺ ion with the cobalt-PDC complex.

Sample	A/d	Applied AC Potentials	Capacitor	Capacitance	-
Sample	(cm)	(mV)	component	(<i>F</i>)	ε _r
Bulk H ₂ O (Reference) ^{S10}	_	-	-	_	80
LiCo(PDC) ₂ : bulk pellet	2.1380	400	C ₁	$2.56\times10^{\text{-10}}$	1352
		400	C ₂	$2.88\times\mathbf{10^{\text{-}10}}$	1521
$(C_n = C_1 + C_2)$			C _n	$5.44 imes 10^{-10}$	2874
LiCo(PDC) ₂ : [010] axis	0.0079	150	C ₁	$7.36 imes 10^{-13}$	1058
		200	C1	$6.96\times10^{\text{-13}}$	1001
		250	C ₁	$7.82 imes 10^{-13}$	1125
		300	C1	$7.43 imes 10^{-13}$	1069
		350	C1	$7.10 imes 10^{-13}$	1022
		400	C ₁	8.76 × 10 ⁻¹³	1260

T 11 66 6 . . . **C** 11 **C**

Section S11. Temperature-dependent Conductivity Measurements for LiCo(PDC)₂

To determine an activation energy required for the transport of Li⁺ ion residing in the small channel space of LiCo(PDC)₂ crystal, we examined the temperature–dependent conductivity using a LiCo(PDC)₂ pellet. The result indicated that the conductivity increased as the temperature increased (see Figure S14). This conductivity change was well fitted to an Arrhenius plot and the activation energy was calculated to be 0.47 eV (see Figure S15). We note that the activation energy is approximately 20-fold higher than a theoretical thermal energy corresponding to room temperature (ca. 25.7 meV). Although more comprehensive study is required to address this point, we observed that the activation energy is comparable to the values obtained from other porous materials.^{S16-S17} We also observed that the values of capacitance and dielectric constant calculated from the Nyquist plots of this experiments were agreed well with the values obtained from other samples used in Section S10.

Figure S14. Nyquist plots of LiCo(PDC)₂ pellet measured at different temperatures. Solid curves indicate the fitting results for the corresponding Nyquist plots.

Figure S15. Arrhenius plot based on the conductivity measurements for LiCo(PDC)₂ pellet. Activation energy was obtained by least-square fitting (solid line) as indicated.

References

- S1. SAINT. Siemens Analytical X-ray Instruments, Madison, WI, 1995.
- S2. Farrugia, L. J. Appl. Crystallogr. 1999, 32, 837.
- S3. Sheldrick, G. University of Göttingen, Germany 1997, 97-2.
- S4. Sheldrick, G., SHELXL-97, program for X-ray crystal structure refinement. University of Göttingen, Germany: **1997**.
- S5. Jeon, H. R.; Lee, D. W.; Ok, K. M. J. Solid State Chem. 2012, 187, 83-88.
- S6. Doadrio, A. L.; Sotelo, J.; Fernández-Ruano, A. Química Nova 2002, 25, 525-528.
- S7. Harada, H.; Kodera, M.; Vučković, G.; Matsumoto, N.; Kida, S. Inorg. Chem. 1991, 30, 1190-1194.
- S8. Comba, P.; Sickmuüller, A. F. Inorg. Chem. 1997, 36, 4500-4507.
- S9. Kügler, M.; Gałęzowska, J.; Schendzielorz, F.; Dechert, S.; Demeshko, S.; Siewert, I. Eur. J. Inorg. Chem. 2015, 2695–2706
- S10. Permittivity (Dielectric Constant) of Liquids. In CRC Handbook of Chemistry and Physics, 90th ed.; Lide, D. R., Ed. CRC Press: Boca Raton, FL, **2010**; p 6-149.
- S11. Qu, B. -T.; Lai, J. –C.; Liu, S.; Liu, F.; Gao, Y. –D.; You, X. –Z. Cryst. Growth Des. 2015, 15, 1707-1713.
- S12. Brede, F. A.; Heine, J.; Sextl, G.; Miller-Buschbaum, K. Chem. Eur. J. 2016, 22, 2708-2718.
- S13. Tang, Y. -Z.; Huang, X. -F.; Song, Y. -M.; Chan, P. W. H.; Xiong, R. -G. Inorg. Chem. 2006, 45, 4868-4870.
- S14. Homes, C. C.; Vogt, T.; Shapiro, S. M.; Wakimoto, S.; Ramirez, A. P. Science 2001, 293, 673-676.
- S15. Hughes, H.; Allix, M. M. B.; Bridges, C. A.; Claridge, J. B.; Kuang, X.; Niu, H.; Taylor, S.; Song, W.; Rosseinsky, M. J. J. Am. Chem. Soc. 2005, 127, 13790-3791.
- S15. Hughes, H.; Allix, M. M. B.; Bridges, C. A.; Claridge, J. B.; Kuang, X.; Niu, H.; Taylor, S.; Song, W.; Rosseinsky, M. J. J. Am. Chem. Soc. 2005, 127, 13790-3791.
- S16. Yamada, T.; Sadakiyo, M.; Kitagawa, H. J. Am. Chem. Soc. 2009, 131, 3144-3145.
- S17. Sadakiyo, M.; Yamada, T.; Kitagawa, H. J. Am. Chem. Soc. 2009, 131, 9906-9907.