## Supporting Information for

## Syntheses, structures, and properties of sulfides constructed by SbS<sub>4</sub> teeter-totter polyhedron: Ba<sub>3</sub>La<sub>4</sub>Ga<sub>2</sub>Sb<sub>2</sub>S<sub>15</sub> and BaLa<sub>3</sub>GaSb<sub>2</sub>S<sub>10</sub>

Rui-Huan Duan,<sup>a,b</sup> Jin-Ni Shen,<sup>c</sup> Chen-Sheng Lin,<sup>d</sup> Peng-Fei Liu,<sup>a,b</sup> Hua Lin,<sup>a</sup> Shang-

Xiong Huang-Fu,<sup>e</sup> Hua-Jun Zhao,<sup>f</sup> Muhammad Ali Khan<sup>a,b</sup> and Ling Chen\*a

a Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China,

b University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China

c College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350002, People's Republic of China

d State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Mater, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China

e Physics Institute of the University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland

f Laboratory of Applied Research on the Characteristic Resources in the North of Guizhou Province, School of Chemistry and Chemical Engineering, Zunyi Normal College, Zunyi, Guizhou 563002, China.

E-mail: chenl@bnu.edu.cn. chenl@fjirsm.ac.cn. Tel: +(011)86(0)-591-63173131

Table S1. Atomic coordinates and equivalent isotropic displacement parameters of

| Atom       | Wyckoff     | x          | У         | Z         | U(eq)     |
|------------|-------------|------------|-----------|-----------|-----------|
| Lal        | 8 <i>j</i>  | 0.05421(4) | 0.3355(2) | 1/2       | 0.0132(3) |
| La2        | 8 <i>j</i>  | 0.28521(4) | 0.3660(2) | 0.0000    | 0.0112(3) |
| Ba1        | 4 <i>a</i>  | 0.0000     | 0.0000    | 1/4       | 0.0146(3) |
| Ba2        | 8 <i>f</i>  | 0.16341(4) | 1/2       | 3/4       | 0.0142(3) |
| Sb1        | 8 <i>j</i>  | 0.10175(6) | 0.7872(2) | 1/2       | 0.0316(4) |
| Gal        | 8 <i>f</i>  | 0.17035(6) | 0.0000    | 1/4       | 0.0093(4) |
| <b>S</b> 1 | 16 <i>k</i> | 0.1183(2)  | 0.1624(3) | 0.3514(2) | 0.0135(5) |
| S2         | 8 <i>j</i>  | 0.1671(2)  | 0.5021(4) | 1/2       | 0.0137(8) |
| <b>S</b> 3 | 16 <i>k</i> | 0.2240(2)  | 0.1506(3) | 0.1435(2) | 0.0142(5) |
| S4         | 16 <i>k</i> | 0.0493(2)  | 0.6465(3) | 0.6317(2) | 0.0136(5) |
| S5         | 4c          | 0.0000     | 1.0000    | 1/2       | 0.0174(2) |

compound 1 and 2.

| Atom       | Wyckoff    | x          | У           | Z           | U(eq)      |
|------------|------------|------------|-------------|-------------|------------|
| Lal        | 2 <i>e</i> | 0.6161(2)  | 1/4         | 0.05695(6)  | 0.0090(2)  |
| La2        | 2 <i>e</i> | 1.1157(2)  | 1/4         | 0.94309(6)  | 0.0088(2)  |
| La3        | 2 <i>e</i> | 1.8804(2)  | 1/4         | 0.69118(6)  | 0.0101(2)  |
| La4        | 2 <i>e</i> | 1.38044(2) | 1/4         | 0.30897(6)  | 0.0097(2)  |
| La5        | 4 <i>f</i> | 1.24990(9) | -0.00004(6) | 1.12751(4)  | 0.0145(2)  |
| Ba1        | 4 <i>f</i> | 2.24990(9) | -0.00003(6) | 0.61748(4)  | 0.61748(4) |
| Gal        | 4 <i>f</i> | 0.7501(2)  | -0.0001(4)  | 0.12602(7)  | 0.0084(3)  |
| Sb1        | 2 <i>e</i> | 0.9526(2)  | 1/4         | 0.21986(7)  | 0.0138(3)  |
| Sb2        | 2 <i>e</i> | 1.5277 (2) | 1/4         | 0.53715(7)  | 0.0139(3)  |
| Sb3        | 2 <i>e</i> | 2.0278(2)  | 1/4         | 0.46281(7)  | 0.0137(3)  |
| Sb4        | 2 <i>e</i> | 1.4524(2)  | 1/4         | 0.78022(7)  | 0.0141(3)  |
| <b>S</b> 1 | 4 <i>f</i> | 1.5975(4)  | 0.1085(2)   | 0.7132(2)   | 0.0132(6)  |
| S2         | 2 <i>e</i> | 0.7471(5)  | 1/4         | -0.1220(2)  | 0.019(2)   |
| S3         | 4 <i>f</i> | 1.0975(4)  | 0.1077(2)   | 0.2870(2)   | 0.0142(6)  |
| S4         | 2 <i>e</i> | 0.2476(5)  | 1/4         | 0.1212(3)   | 0.020(2)   |
| S5         | 4 <i>f</i> | 0.9029(4)  | 0.1028(2)   | 0.0380(2)   | 0.0133(6)  |
| <b>S</b> 6 | 4 <i>f</i> | 1.0760(4)  | 0.1030(2)   | 0.8004(2)   | 0.0120(6)  |
| S7         | 4 <i>f</i> | 0.5763(4)  | 0.1028(2)   | 0.1028(2)   | 0.0119(6)  |
| <b>S</b> 8 | 4 <i>f</i> | 0.4021(4)  | 0.1018(2)   | -0.0381 (2) | 0.0128(6)  |
| S9         | 4 <i>f</i> | 1.9136(4)  | 0.1126(2)   | 0.5474 (2)  | 0.0134(6)  |
| S10        | 4 <i>f</i> | 0.0134(6)  | 0.1121(2)   | 0.4525(2)   | 0.0147(6)  |
| S11        | 2 <i>e</i> | 2.2639(5)  | 1/4         | 0.6346(3)   | 0.0183(9)  |
| S12        | 2e         | 1.7643(5)  | 1/4         | 0.3656(3)   | 0.0170(9)  |

Table S2. Selected bond lengths  $(\text{\AA})$  of compound 1 and 2.

| 1        |           |          |           |          |          |  |
|----------|-----------|----------|-----------|----------|----------|--|
| La1–S1×2 | 2.870(3)  | Ba1–S1×4 | 3.370(3)  | Sb1–S4×2 | 2.443(3) |  |
| La1–S5   | 2.9398(9) | Ba1–S5×2 | 3.3976(2) | Sb1–S2   | 2.727(4) |  |
| La1–S2   | 2.972(4)  | Ba1–S4×4 | 3.422(3)  | Sb1–S5   | 2.932(2) |  |
| La1–S4×2 | 3.035(3)  | Ba2–S1×2 | 3.182(3)  | Ga1–S1×2 | 2.247(3) |  |
| La1–S4×2 | 3.039(3)  | Ba2–S3×2 | 3.254(3)  | Ga1–S3×2 | 2.261(3) |  |
| La2–S3×2 | 2.964(3)  | Ba2–S4×2 | 3.345(3)  |          |          |  |
| La2–S2   | 2.979(4)  | Ba2–S2×2 | 3.3988(2) |          |          |  |
| La2–S3×2 | 2.982(3)  | Ba2–S3×2 | 3.425(3)  |          |          |  |
| La2–S1×2 | 3.054(3)  |          |           |          |          |  |
| La2–S2   | 3.114(4)  |          |           |          |          |  |

| 2        |          |         |          |           |          |  |
|----------|----------|---------|----------|-----------|----------|--|
| La1–S2   | 2.940(4) | La5–S6  | 3.091(3) | Ga1–S6    | 2.243(3) |  |
| La1–S8×2 | 2.982(4) | La5–S7  | 3.092(3) | Ga1–S7    | 2.246(3) |  |
| La1–S7×2 | 2.984(3) | La5–S3  | 3.092(3) | Ga1–S8    | 2.260(3) |  |
| La1–S5×2 | 2.997(3) | La5–S1  | 3.092(3) | Ga1–S5    | 2.275(3) |  |
| La1–S4   | 3.024(4) | La5–S8  | 3.131(3) | Sb1–S3×2  | 2.454(3) |  |
| La2–S4   | 2.928(5) | La5–S5  | 3.135(3) | Sb1-S12   | 2.681(5) |  |
| La2–S5×2 | 2.970(3) | La5–S5  | 3.324(3) | Sb1–S4    | 2.747(4) |  |
| La2–S6×2 | 2.978(3) | La5–S8  | 3.327(3) | Sb2-S10×2 | 2.439(3) |  |
| La2–S8×2 | 3.003(3) | La5–S2  | 3.377(2) | Sb2-S11   | 2.539(4) |  |
| La2–S2   | 3.026(4) | Ba1–S10 | 3.203(3) | Sb2-S12   | 3.219(5) |  |

| La3–S9×2  | 2.902(3) | Ba1–S9×2 | 3.203(3) | Sb3–S9×2 | 2.435(3) |
|-----------|----------|----------|----------|----------|----------|
| La3–S1×2  | 2.928(3) | Ba1–S10  | 3.221(3) | Sb3-S12  | 2.530(4) |
| La3–S6×2  | 3.011(3) | Ba1–S12  | 3.388(3) | Sb3–S11  | 3.216(5) |
| La3–S2    | 3.059(4) | Ba1–S11  | 3.389(2) | Sb4–S1×2 | 2.447(3) |
| La3–S11   | 3.098(5) | Ba1–S3   | 3.397(3) | Sb4–S11  | 2.675(5) |
| La4–S10×2 | 2.903(3) | Ba1–S1   | 3.401(3) | Sb4–S2   | 2.733(4) |
| La4–S3×2  | 2.935(3) | Ba1–S7   | 3.413(3) |          |          |
| La4–S7×2  | 3.015(3) | Ba1–S6   | 3.421(3) |          |          |
| La4–S4    | 3.069(5) |          |          |          |          |
| La4–S12   | 3.098(4) |          |          |          |          |
| La5–S6    | 3.091(3) |          |          |          |          |
| La5–S7    | 3.092(3) |          |          |          |          |
| La5–S3    | 3.092(3) |          |          |          |          |
| La5–S1    | 3.092(3) |          |          |          |          |
| La5–S8    | 3.131(3) |          |          |          |          |
| La5–S5    | 3.135(3) |          |          |          |          |
| La5–S5    | 3.324(3) |          |          |          |          |
| La5–S8    | 3.327(3) |          |          |          |          |
| La5–S2    | 3.377(2) |          |          |          |          |
| La5–S4    | 3.379(2) |          |          |          |          |



Figure S1. The tester-totter polyhedron  $SbS_4$ . Legend: yellow, S; blue, Sb.



Figure S2. The isolated finite complex anion constructed by  $SbX_4$  (X = S, Se) teetertotter polyhedron connecting with other units in (a)  $Ba_4LaGe_3SbSe_{13}$ ,<sup>1</sup> (b)

Ba<sub>4</sub>Sb<sub>3</sub>S<sub>8</sub>Cl<sup>2</sup> and (c) Ba<sub>8</sub>Sb<sub>6</sub>S<sub>17</sub>.<sup>3</sup> Legend: blue, Sb; dark red, Ge; yellow, S or Se.



Figrue S3. Infinite chains constructed by SbX<sub>4</sub> (X = S, Se) teeter-totter polyhedron connecting with other units in (a) Pr<sub>4</sub>GaSbS<sub>9</sub>,<sup>4</sup> (b) La<sub>4</sub>InSbS<sub>9</sub>,<sup>5</sup> (c) La<sub>4</sub>FeSb<sub>2</sub>S<sub>10</sub>,<sup>6</sup> (d)
Ba<sub>4</sub>SiSb<sub>2</sub>Se<sub>11</sub>,<sup>7</sup> (e) Na<sub>9</sub>Gd<sub>5</sub>Sb<sub>8</sub>S<sub>26</sub>,<sup>8</sup> (f) SrGeSb<sub>2</sub>Se<sub>8</sub>,<sup>9</sup> and (g) BaSb<sub>2</sub>S<sub>4</sub>.<sup>10</sup> Legend: blue, Sb; light blue, Ga; green, In; blue and dark red, Ge/Sb; yellow, S or Se.



Figure S4. Layers constructed by  $SbS_4$  teeter-totter polyhedron connecting with other units in  $La_2Ga_{0.33}SbS_5$ ,<sup>11</sup>  $RbU_2SbS_8$ .<sup>12</sup> Legend: blue, Sb; red, U; yellow, S.



Figure S5. Experimental and simulated powder X-ray diffraction (XRD) data for (a) compound 1 and (b) 2.



Figure S6. The coordination environment of Ba and La with S atoms in compound **1** (The black, red and yellow balls represent Ba, La and S atoms, respectively)



Figure S7. The coordination environment of La and Ba with S in compound **2** (The black, red and yellow balls represent Ba, La and S atoms, respectively)



Figure S8. Calculated band structure of compound 1 (a) and 2 (b).



Figure S9. The Electron localization function (ELF) isofurfaces for the Sb–S bonds in compound **1** (a) and **2** (b). Contours are from 0.00 to 1.00.

## Reference

- 1. A. Assoud, N. Soheilnia and H. Kleinke, J. Solid State Chem., 2004, 177, 2249.
- 2. H. J. Zhao, J. Solid State Chem., 2016, 235, 18.
- 3. W. Dorrscheidt and H. Schafer, Z. Naturforschung B, 2014, 36, 410.
- M. C. Chen, L. H. Li, Y. B. Chen and L. Chen, J. Am. Chem. Soc., 2011, 133, 4617.
- 5. H. J. Zhao, Y. F. Zhang and L. Chen, J. Am. Chem. Soc., 2012, 134, 1993.
- 6. H. J. Zhao, L. H. Li, L. M. Wu and L. Chen, Inorg. Chem., 2009, 48, 11518.
- 7. K. S. Choi and M. G. Kanatzidis, Inorg. Chem., 2001, 40, 101.

- 8. S. Park and S. J. Kim, J. Solid State Chem., 2001, 161, 129.
- C. Y. Yu, M. F. Wang, M. Y. Chung, S. M. Jang, J. C. Huang and C. S. Lee, *Solid State Sci.*, 2008, 10, 1145.
- 10. G. Cordier, C. Schwidetzky and H. Schafer, J. Solid State Chem., 1984, 54, 84.
- 11. H. J. Zhao, J. Solid State Chem., 2016, 237, 99.
- 12. K. S. Choi and M. G. Kanatzidis, Chem. Mater., 1999, 11, 2613.