### **Supporting material**

#### for

Radical pathway and O<sub>2</sub> participation in benzyl alcohol oxidation, catechol and aminophenol oxidase activity studies with novel zinc complexes: functional modeling of galactose oxidase enzyme, Experimental and theoretical investigation

Ashish Kumar Dhara, Udai Pratap Singh, Kaushik Ghosh\*

Department of Chemistry, Indian Institute of Technology, Roorkee, Roorkee-247667, Uttarakhand, INDIA

Corresponding author: Kaushik Ghosh. Email: ghoshfcy@iitr.ernet.in

Fax: +91-1332-273560



Figure S1. Infrared spectrum of ligand OMe-PhimpH . IR (KBr disk, cm<sup>-1</sup>): 1586 (vC=N) cm<sup>-1</sup>.



Figure S2. Infrared spectrum of ligand Me-PhimpH . IR (KBr disk, cm<sup>-1</sup>): 1585 (vC=N) cm<sup>-1</sup>.



Figure S3. Infrared spectrum of ligand N-PhimpH. IR (KBr disk, cm<sup>-1</sup>): 1590 (vC=N) cm<sup>-1</sup>.



Figure S4. Infrared spectrum of ligand PhimpH. IR (KBr disk, cm<sup>-1</sup>): 1608 (vC=N) cm<sup>-1</sup>.



Figure S5. Infrared spectrum of complex 1. IR (KBr disk, cm<sup>-1</sup>): 1652 (vC=N) cm<sup>-1</sup>.



Figure S6. Infrared spectrum of complex 2. IR (KBr disk, cm<sup>-1</sup>): 1561 (vC=N) cm<sup>-1</sup>.



Figure S7. Infrared spectrum of complex 3. IR (KBr disk, cm<sup>-1</sup>): 1651 (vC=N) cm<sup>-1</sup>.



Figure S8. Infrared spectrum of complex 4. IR (KBr disk, cm<sup>-1</sup>): 1605 (vC=N) cm<sup>-1</sup>.



Figure S9. <sup>1</sup>H NMR spectrum of complex 1 in DMSO at room temperature.



Figure S10. <sup>13</sup>C NMR spectrum of complex 1 in DMSO at room temperature.





Figure S12. <sup>13</sup>C NMR spectrum of complex 3 in DMSO at room temperature.







Figure S15. Electronic absorption spectra of 1 ( — ), 2 ( — ), 3.CH<sub>3</sub>CN ( — ), and 4 ( — ) in acetonitrile solvent.

Table S1 Non-covalent interactions observed in the packing diagrams of complex 1 and complex 3. CH<sub>3</sub>CN.

|    | Distance (Å)   | Comments                                                                                 |
|----|----------------|------------------------------------------------------------------------------------------|
|    |                | 1                                                                                        |
| 1. | (H21Cl2) 2.763 | Intermolecular hydrogen bonding between chloride ion<br>and aryl hydrogen of phenyl ring |
| 2. | (H18Cl1) 2.799 | Intramolecular hydrogen bonding between chloride ion<br>and aryl hydrogen of phenyl ring |
| 3. | (H1 Cl2) 2.791 | Intramolecular hydrogen bonding between chloride ion<br>and aryl hydrogen of phenyl ring |
|    |                | <b>3</b> .CH <sub>3</sub> CN                                                             |
| 1. | (H24Cl5) 2.845 | Intermolecular hydrogen bonding between chloride ion<br>and aryl hydrogen of phenyl ring |
| 2. | (H6Cl5) 2.769  | Intramolecular hydrogen bonding between chloride ion<br>and aryl hydrogen of phenyl ring |
| 3. | (H17Cl3) 2.840 | Intramolecular hydrogen bonding between chloride ion<br>and aryl hydrogen of phenyl ring |



Figure S16. Optimized structure of complex 1.



Figure S17. Optimized structure of complex 2.



Figure S18. Optimized structure of complex 3.CH<sub>3</sub>CN.



Figure S19. Optimized structure of complex 4

Table S2. Experimental and theoretical bond length data of complexes 1 and 3.CH<sub>3</sub>CN



| Bond length | Comj  | plex 1 | Complex <b>3</b> .CH <sub>3</sub> CN |       |  |
|-------------|-------|--------|--------------------------------------|-------|--|
|             | X-Ray | DFT    | X-Ray                                | DFT   |  |
| Zn1-O1      | 2.044 | 2.055  | 2.045                                | 2.067 |  |
| Zn1-O2      | 2.039 | 2.056  | 2.028                                | 2.069 |  |
| Zn2-O1      | 2.064 | 2.062  | 2.022                                | 2.069 |  |
| Zn2-O2      | 2.039 | 2.049  | 2.079                                | 2.067 |  |
| Zn1-N1      | 2.156 | 2.181  | 2.134                                | 2.162 |  |
| Zn1-N2      | 2.120 | 2.167  | 2.084                                | 2.163 |  |
| Zn2-N3      | 2.149 | 2.062  | 2.147                                | 2.162 |  |
| Zn2-N4      | 2.110 | 2.049  | 2.073                                | 2.163 |  |
| Zn1-Cl1     | 2.237 | 2.370  | 2.229                                | 2.357 |  |
| Zn2-Cl2     | 2.231 | 2.373  | 2.226                                | 2.358 |  |





Figure S20. HOMO LUMO diagram of complexes 1 and 2.





Figure S21. HOMO LUMO diagram of complexes 3 and 4.

 Table S3 Data for yield, elemental analysis and IR spectral studies.

| Complex | Yield<br>(%) | Eler  | IR data<br>(cm <sup>-1</sup> , KBr<br>pellets) |       |                  |
|---------|--------------|-------|------------------------------------------------|-------|------------------|
|         |              | C     | H                                              | Ν     | V <sub>C=N</sub> |
| 1       | 71           | 54.10 | 3.03                                           | 9.55  | 1652             |
| 2       | 74           | 56.60 | 4.00                                           | 10.42 | 1561             |
| 3       | 74           | 60.33 | 3.34                                           | 9.21  | 1651             |
| 4       | 81           | 55.60 | 3.78                                           | 10.11 | 1605             |

Table S4 Frontier molecular orbital composition in the ground state for complex  $\mathbf{2}$ 

| Orbital | Energy  |    |    | Contrib | ution |           | Main bond type                           |
|---------|---------|----|----|---------|-------|-----------|------------------------------------------|
|         |         | Zn | 0  | N       | Cl    | Phenolato |                                          |
|         |         |    |    |         |       | ring      |                                          |
| L+5     | -1.2460 | 0  | 0  | 5       | 0     | 0         | $\pi^*(L)$                               |
| L+4     | -1.2465 | 0  | 0  | 5       | 0     | 0         | $\pi^*(L)$                               |
| L+3     | -1.3796 | 0  | 1  | 15      | 0     | 14        | $\pi^*(L) + \pi^*(Phenolato ring)$       |
| L+2     | -1.4261 | 0  | 0  | 14      | 0     | 13        | $\pi^*(L) + \pi^*(Phenolato ring)$       |
| L+1     | -1.8805 | 1  | 4  | 20      | 0     | 39        | $\pi^*(L) + \pi^*(Phenolato ring)$       |
| L       | -1.8969 | 1  | 3  | 21      | 0     | 38        | $\pi^*(L) + \pi^*(Phenolato ring)$       |
| Н       | -5.3712 | 0  | 11 | 22      | 2     | 67        | $\pi$ (L)+ $\pi$ (Phenolato ring)        |
| H-1     | -5.4314 | 1  | 9  | 22      | 3     | 66        | $\pi$ (L)+ $\pi$ (Phenolato ring)        |
| H-2     | -6.1302 | 2  | 6  | 2       | 51    | 39        | $\pi(L) + \pi(Phenolato ring) + n(Cl)$   |
| Н-3     | -6.1800 | 5  | 1  | 1       | 92    | 2         | $\pi(L) + \pi(Phenolato ring) + n(Cl)$   |
| H-4     | -6.2020 | 3  | 1  | 1       | 90    | 4         | $\pi(L)$ )+n(Cl)+ $\pi$ (Phenolato ring) |
| H-5     | -6.2085 | 2  | 5  | 1       | 51    | 43        | $\pi(L)$ )+n(Cl)+ $\pi$ (Phenolato ring) |

 Table S5
 Frontier molecular orbital composition in the ground state for complex 3

| Orbital | Energy  |    |    | Contrib | ution |           | Main bond type                         |
|---------|---------|----|----|---------|-------|-----------|----------------------------------------|
|         |         | Zn | 0  | N       | Cl    | Phenolato |                                        |
|         |         |    |    |         |       | ring      |                                        |
| L+5     | -1.1197 | 0  | 0  | 4       | 0     | 0         | $\pi^*(L)$                             |
| L+4     | -1.1200 | 0  | 0  | 4       | 0     | 0         | $\pi^*(L)$                             |
| L+3     | -1.2432 | 0  | 1  | 15      | 0     | 9         | $\pi^*(L) + \pi^*(Phenolato ring)$     |
| L+2     | -1.2884 | 0  | 1  | 15      | 0     | 11        | $\pi^*(L) + \pi^*(Phenolato ring)$     |
| L+1     | -1.7292 | 1  | 2  | 23      | 1     | 21        | $\pi^*(L) + \pi^*(Phenolato ring)$     |
| L       | -1.7478 | 2  | 2  | 23      | 0     | 21        | $\pi^*(L) + \pi^*(Phenolato ring)$     |
| Н       | -5.3938 | 0  | 19 | 17      | 2     | 65        | $\pi$ (L)+ $\pi$ (Phenolato ring)      |
| H-1     | -5.4736 | 1  | 15 | 18      | 4     | 60        | $\pi$ (L)+ $\pi$ (Phenolato ring)      |
| H-2     | -6.0396 | 1  | 4  | 14      | 32    | 37        | $\pi(L) + \pi(Phenolato ring) + n(Cl)$ |
| H-3     | -6.0948 | 1  | 5  | 14      | 31    | 39        | $\pi(L) + \pi(Phenolato ring) + n(Cl)$ |
| H-4     | -6.1158 | 5  | 1  | 1       | 88    | 5         | $\pi(L) + n(Cl)$                       |
| H-5     | -6.1245 | 4  | 1  | 2       | 87    | 6         | $\pi(L)$ )+ n(Cl)                      |

Table S6 Frontier molecular orbital composition in the ground state for complex 4

| Orbital | Energy  |    |    | Contrib | ution |           | Main bond type                           |
|---------|---------|----|----|---------|-------|-----------|------------------------------------------|
|         |         | Zn | 0  | N       | Cl    | Phenolato |                                          |
|         |         |    |    |         |       | ring      |                                          |
| L+5     | -1.1407 | 0  | 0  | 4       | 0     | 0         | π*(L)                                    |
| L+4     | -1.1409 | 0  | 0  | 4       | 0     | 0         | $\pi^*(L)$                               |
| L+3     | -1.2852 | 0  | 1  | 16      | 0     | 11        | $\pi^*(L) + \pi^*(Phenolato ring)$       |
| L+2     | -1.3309 | 0  | 0  | 15      | 0     | 11        | $\pi^*(L) + \pi^*(Phenolato ring)$       |
| L+1     | -1.7837 | 1  | 2  | 23      | 1     | 24        | $\pi^*(L) + \pi^*(Phenolato ring)$       |
| L       | -1.8969 | 1  | 2  | 23      | 1     | 24        | $\pi^*(L) + \pi^*(Phenolato ring)$       |
| Н       | -5.5566 | 0  | 19 | 21      | 3     | 67        | $\pi$ (L)+ $\pi$ (Phenolato ring)        |
| H-1     | -5.6303 | 1  | 14 | 21      | 3     | 60        | $\pi$ (L)+ $\pi$ (Phenolato ring)        |
| Н-2     | -6.1190 | 2  | 5  | 9       | 45    | 34        | $\pi(L)+\pi(Phenolato ring)+n(Cl)$       |
| Н-3     | -6.1702 | 4  | 1  | 2       | 87    | 4         | $\pi(L)+\pi(Phenolato ring)+n(Cl)$       |
| H-4     | -6.1900 | 4  | 1  | 2       | 83    | 9         | $\pi(L)$ )+n(Cl)+ $\pi$ (Phenolato ring) |
| H-5     | -6.1909 | 2  | 5  | 6       | 53    | 33        | $\pi(L)$ )+n(Cl)+ $\pi$ (Phenolato ring) |

**Table S7** Selected parameters for the vertical excitation (UV-vis absorptions) of the complexes **1** and **2**. Excitation energy (eV) and oscillator strengths (f), assignment of the transition calculated by TDDFT//B3LYP/LANL2DZ on the optimized ground state geometries

| Electronic<br>transitions | Composition                           | E (eV) | Oscillator<br>strength (f) | $\lambda_{\text{theo}}$ (nm) | $\lambda_{exp}$ (nm) | CI     | Assign |  |  |  |
|---------------------------|---------------------------------------|--------|----------------------------|------------------------------|----------------------|--------|--------|--|--|--|
|                           |                                       |        |                            |                              |                      |        |        |  |  |  |
|                           | Complex 1                             |        |                            |                              |                      |        |        |  |  |  |
| $S_0 \rightarrow S_3$     | $H-1 \rightarrow L (62.89\%)$         | 3.00   | 0.0246                     | 412                          | 410                  | 0.644  | ILCT   |  |  |  |
|                           | H−1 → L+1 (20.2%)                     |        |                            |                              |                      | 0.207  | ILCT   |  |  |  |
|                           | $H \rightarrow L+1 \ (16.87\%)$       |        |                            |                              |                      | -0.173 | ILCT   |  |  |  |
| $S_0 \rightarrow S_4$     | $H-1 \rightarrow L (23.58\%)$         | 3.05   | 0.1239                     | 405                          | 410                  | -0.205 | ILCT   |  |  |  |
|                           | H−1 → L+1 (76.4%)                     |        |                            |                              |                      | 0.665  | ILCT   |  |  |  |
| $S_0 \rightarrow S_7$     | $H-1 \rightarrow L+2 (100\%)$         | 3.48   | 0.0470                     | 355                          | 328                  | 0.685  | ILCT   |  |  |  |
| $S_0 \rightarrow S_{20}$  | H−7 → L (19.6%)                       |        |                            |                              |                      | -0.320 | ILCT   |  |  |  |
|                           | H−7 → L+1 (10.6%)                     |        |                            |                              |                      | 0.173  | ILCT   |  |  |  |
|                           | $H-6 \rightarrow L+1 (7.56\%)$        |        |                            |                              |                      | -0.123 | ILCT   |  |  |  |
|                           | $H-4 \rightarrow L (6.25\%)$          | 3.86   | 0.2844                     | 320                          | 308                  | 0.102  | ILCT   |  |  |  |
|                           | $H-3 \rightarrow L(28,28\%)$          |        |                            |                              |                      | 0.461  | ILCT   |  |  |  |
|                           | $H_{-2} \rightarrow I + 1 (11.6\%)$   |        |                            |                              |                      | -0.189 | ILCT   |  |  |  |
|                           | $H 2 \rightarrow L + 5 (40/)$         |        |                            |                              |                      | 0.159  | ILCT   |  |  |  |
|                           | H-3 / L+3 (4%)                        |        |                            |                              |                      | 0.102  | ILCT   |  |  |  |
|                           | $H \rightarrow L+6 (9.75\%)$          |        |                            |                              |                      |        |        |  |  |  |
| $S_0 \rightarrow S_{38}$  | $H-8 \rightarrow L+1 \ (7.81\%)$      |        |                            |                              |                      | 0.147  | ILCT   |  |  |  |
|                           | $H-7 \rightarrow L+2 (10.4\%)$        |        |                            |                              |                      | 0.196  | ILCT   |  |  |  |
|                           | $H-6 \rightarrow L+2 (16.5\%)$        |        |                            |                              |                      | -0.310 | ILCT   |  |  |  |
|                           | $H-6 \rightarrow L+3 (21.6\%)$        | 4.28   | 0.0210                     | 289                          | 258                  | 0.407  | ILCT   |  |  |  |
|                           | $H-3 \rightarrow L+2 (6.91\%)$        |        |                            |                              |                      | -0.130 | ILCT   |  |  |  |
|                           | $H-2 \rightarrow L+2 (9.87\%)$        |        |                            |                              |                      | -0.186 | ILCT   |  |  |  |
|                           | $H_{-1} \rightarrow I + 8 (0 \ 48\%)$ |        |                            |                              |                      | -0.178 | ILCT   |  |  |  |
|                           | H = 1 + 0 (5.4070)                    |        |                            |                              |                      | 0.122  | ILCT   |  |  |  |
|                           | $H-1 \rightarrow L+9 (6.51\%)$        |        |                            |                              |                      | -0.209 | ILCT   |  |  |  |
|                           | $H \rightarrow L+9 (11.11\%)$         |        |                            |                              |                      |        |        |  |  |  |
|                           |                                       | C      | complex 2                  |                              |                      |        |        |  |  |  |
| $S_0 \rightarrow S_4$     | $H-1 \rightarrow L+1 (100\%)$         | 3.28   | 0.1620                     | 377                          | 375                  | 0.693  | ILCT   |  |  |  |
| $S_0 \rightarrow S_6$     | H−2 $\rightarrow$ L (11.56%)          |        |                            |                              |                      | -0.117 | ILCT   |  |  |  |

|                          | $H-1 \rightarrow L+2 (29.8\%)$ | 3.64 | 0.0859 | 340 | 324 | 0.304  | ILCT |
|--------------------------|--------------------------------|------|--------|-----|-----|--------|------|
|                          | H → L+3 (58.54%)               |      |        |     |     | 0.596  | ILCT |
| $S_0 \rightarrow S_{18}$ | $H-7 \rightarrow L+1 (20.5\%)$ |      |        |     |     | 0.238  | ILCT |
|                          | H−6 $\rightarrow$ L (22%)      | 3.92 | 0.3165 | 315 | 324 | 0.255  | ILCT |
|                          | $H-3 \rightarrow L+1 (47.5\%)$ |      |        |     |     | 0.551  | ILCT |
|                          | $H \rightarrow L+7 (10\%)$     |      |        |     |     | 0.116  | ILCT |
| $S_0 \rightarrow S_{36}$ | $H-12 \rightarrow L+1 (9.9\%)$ |      |        |     |     | -0.126 | ILCT |
|                          | H−8 → L+1 (41.1%)              | 4.34 | 0.1209 | 285 | 273 | 0.524  | ILCT |
|                          | $H-6 \rightarrow L+3 (10.7\%)$ |      |        |     |     | -0.136 | ILCT |
|                          | $H-2 \rightarrow L+3 (17.2\%)$ |      |        |     |     | -0.219 | ILCT |
|                          | H → L+8 (20.96%)               |      |        |     |     | -0.267 | ILCT |

**Table S8** Selected parameters for the vertical excitation (UV-vis absorptions) of the complexes **3** and **4**. Excitation energy (eV) and oscillator strengths (f), assignment of the transition calculated by TDDFT//B3LYP/LANL2DZ on the optimized ground state geometries

| Electronic               | Composition                    | E (eV) | Oscillator  | $\lambda_{\text{theo}}$ | λ <sub>exp</sub> | CI     | Assign |
|--------------------------|--------------------------------|--------|-------------|-------------------------|------------------|--------|--------|
| ti ansitions             |                                |        | strength () |                         | (nm)             |        |        |
|                          |                                | Comple | x 3         | •                       | •                |        |        |
| $S_0 \rightarrow S_4$    | $H-1 \rightarrow L+1 (74.5\%)$ | 3.16   | 0.3822      | 391                     | 414              | 0.655  | ILCT   |
|                          | H→ L (25.5%)                   |        |             |                         |                  | 0.224  | ILCT   |
| $S_0 \rightarrow S_{15}$ | $H-7 \rightarrow L+1 (15.3\%)$ |        |             |                         |                  | -0.241 | ILCT   |
|                          | H−6 $\rightarrow$ L (19.2%)    |        |             |                         |                  | -0.303 | ILCT   |
|                          | $H-5 \rightarrow L+1 \ (14\%)$ | 3.77   | 0.1934      | 329                     | 334              | 0.222  | ILCT   |
|                          | $H-3 \rightarrow L+1 (19.8\%)$ |        |             |                         |                  | 0.312  | ILCT   |
|                          | $H-2 \rightarrow L(25\%)$      |        |             |                         |                  | 0.392  | ILCT   |
|                          | $H \rightarrow L + A (6.69/)$  |        |             |                         |                  | -0.104 | ILCT   |
|                          | П Г L+4 (0.0%)                 |        |             |                         |                  |        |        |
| $S_0 \rightarrow S_{60}$ | $H-8 \rightarrow L+2 (9\%)$    |        |             |                         |                  | 0.104  | ILCT   |
|                          | H−1 → L+9 (16.7%)              | 4.53   | 0.0575      | 273                     | 275              | -0.193 | ILCT   |
|                          | $H-1 \rightarrow L+10 (35\%)$  |        |             |                         |                  | -0.406 | ILCT   |
|                          |                                |        |             |                         |                  | 0.454  | ILCT   |

|                          | H→ L+11 (39%)                                  |         |        |     |     |        |      |
|--------------------------|------------------------------------------------|---------|--------|-----|-----|--------|------|
|                          |                                                |         |        |     |     |        |      |
|                          |                                                |         |        |     |     |        |      |
|                          |                                                | Complex | 4      |     |     |        |      |
| $S_0 \rightarrow S_2$    | $H \rightarrow L (100\%)$                      | 3.27    | 0.1164 | 378 | 368 | 0.697  | ILCT |
| $S_0 \rightarrow S_8$    | $H-6 \xrightarrow{\longrightarrow} L (6.86\%)$ |         |        |     |     | 0.110  | ILCT |
|                          | $H-5 \rightarrow L+1(17.53\%)$                 | 3.74    | 0.0795 | 331 | 329 | 0.281  | ILCT |
|                          | H–4 → L (14.76%)                               |         |        |     |     | 0.237  | ILCT |
|                          | $H-2 \rightarrow L (16.36\%)$                  |         |        |     |     | 0.262  | ILCT |
|                          | $H-1 \rightarrow L+2(19.96\%)$                 |         |        |     |     | 0.320  | ILCT |
|                          | H→ L+3(24 50%)                                 |         |        |     |     | 0.393  | ILCT |
| <u> </u>                 |                                                |         |        |     |     | 0.250  | ИСТ  |
| $S_0 \rightarrow S_{20}$ | $H-7 \rightarrow L+1 (17.1\%)$                 |         |        |     |     | -0.259 | ILUI |
|                          | H−6 → L (24.01%)                               | 3.96    | 0.3405 | 312 | 300 | -0.363 | ILCT |
|                          | $H-5 \rightarrow L+1 (27.6\%)$                 |         |        |     |     | 0.418  | ILCT |
|                          | $H-3 \rightarrow L+1 (13.5\%)$                 |         |        |     |     | -0.204 | ILCT |
|                          | H−1 → L+2 (10.1%)                              |         |        |     |     | -0.153 | ILCT |
|                          | H→ L+2 (7.60%)                                 |         |        |     |     | -0.115 | ILCT |
| $S_0 \rightarrow S_{36}$ | $H-9 \rightarrow L (5.90\%)$                   |         |        |     |     | 0.101  | ILCT |
|                          | $H \to L+1 (13.3\%)$                           |         |        |     |     | 0.228  | ILCT |
|                          | $H-7 \rightarrow L+2 (13\%)$                   | 4.40    | 0.1441 | 282 | 245 | 0.222  | ILCT |
|                          | $H_{-6} \rightarrow L_{+3} (17.7\%)$           |         |        |     |     | -0.301 | ILCT |
|                          | $H_{-4} \rightarrow I_{+3} (6.61\%)$           |         |        |     |     | 0.113  | ILCT |
|                          | $H \rightarrow H \rightarrow 2 (22.00/)$       |         |        |     |     | 0.406  | ILCT |
|                          | $H-2 \rightarrow L+3 (23.8\%)$                 |         |        |     |     | 0.216  | ILCT |
|                          | $H-1 \rightarrow L+6 (12.7\%)$                 |         |        |     |     | -0.119 | ILCT |
|                          | H→ L+8 (7%)                                    |         |        |     |     |        |      |

 Table S9 Analysis for complex 1: Natural Bond Orbitals and Occupancy

| Valence bond orbitals | Occupancy | Antibonding orbitals | Occupancy | bond type |
|-----------------------|-----------|----------------------|-----------|-----------|
| BD( 1) C13 – N82      | 1.9827    | BD*( 1) C13 – N82    | 0.01430   | Single    |

| BD( 2) C13 – N82 | 1.9405  | BD*( 2) C13 – N82  | 0.26051 | Double    |
|------------------|---------|--------------------|---------|-----------|
| BD( 1) C15 – N83 | 1.9790  | BD*( 1) C15 – N83  | 0.05244 | Single    |
| BD(1) C26 – N83  | 1.97744 | BD*( 1) C26 – N83  | 0.04513 | Single    |
| BD(1) C26 – N84  | 1.98025 | BD*( 1) C26 – N84  | 0.03011 | Single    |
| BD( 1) C33 – N 4 | 1.98226 | BD*( 1) C33 – N84  | 0.01776 | Single    |
| BD( 2) C33 – N84 | 1.77159 | BD*( 2) C33 – N84  | 0.46302 | Double    |
| BD( 1) C39 – O78 | 1.98765 | BD*( 1) C39 – O78  | 0.03685 | Single    |
| BD(1) C43 – N79  | 1.98269 | BD*( 1) C43 – N79  | 0.01439 | Single    |
| BD( 2) C43 – N79 | 1.94068 | BD*( 2) C43 – N79  | 0.27178 | Double    |
| BD(1) C45 – N80  | 1.97898 | BD*( 1) C45 – N80  | 0.05236 | Single    |
| BD(1) C56 – N80  | 1.97740 | BD*( 1) C56 – N80  | 0.04506 | Single    |
| BD(1) C56 – N81  | 1.98021 | BD*( 1) C56 – N81  | 0.03008 | Single    |
| BD(1) C63 – N81  | 1.98225 | BD*( 1) C63 – N81  | 0.01773 | Single    |
| BD( 2) C63 – N81 | 1.77133 | BD*( 2) C63 – N81  | 0.46231 | Double    |
| BD( 1) C65 – O76 | 1.99056 | BD*( 1) C65 – O76  | 0.02611 | Single    |
| BD( 1) C66 – O75 | 1.99061 | BD*( 1) C66 – O75  | 0.02588 | Single    |
| BD( 1) C67 – O78 | 1.99110 | BD*( 1) C67 – O78  | 0.01120 | Single    |
| BD( 1) C71 – O77 | 1.99101 | BD*( 1) C71 – O 77 | 0.01063 | Single    |
| BD(1) N79 – N80  | 1.97893 | BD*( 1) N79 – N 80 | 0.05049 | Single    |
| BD( 1) N82 – N83 | 1.97905 | BD*( 1) N82 – N 83 | 0.05068 | Single    |
| LP( 1)Zn 1       | 1.99905 | LP*( 1)Zn 1        | 0.31725 | Lone pair |
| LP( 2)Zn 1       | 1.99854 | LP*( 7)Zn 1        | 0.14103 |           |
| LP( 1)Zn 2       | 1.99905 | LP*( 6)Zn 2        | 0.31796 |           |
| LP( 2)Zn 2       | 1.99853 | LP*( 7)Zn 2        | 0.14133 |           |
| LP(1) O 75       | 1.91396 |                    |         |           |
| LP(2) O 75       | 1.85470 |                    |         |           |
| LP(1) O 76       | 1.91386 |                    |         |           |
| LP(2) O 76       | 1.85383 |                    |         |           |
| LP(1) N 79       | 1.86308 |                    |         |           |
| LP(1) N 80       | 1.69100 |                    |         |           |
| LP(1) N 81       | 1.85254 |                    |         |           |

| LP(1) N 82 | 1.86361 |
|------------|---------|
| LP(1) N 83 | 1.68965 |
| LP(1) N 84 | 1.85225 |

# Table S10 Analysis for complex 1: Natural Bond Orbitals and coefficient/hybrids

| Valence bond     | coefficient/hybrids                                      | Antibond           | coefficient/hybrids                                      |
|------------------|----------------------------------------------------------|--------------------|----------------------------------------------------------|
| BD( 1) C13 – N82 | 0.6199(sp <sup>2.16</sup> ) 0.7846(sp <sup>1.35</sup> )  | BD*( 1) C13 – N82  | $0.7846(sp^{2.16}) - 0.6199(sp^{1.35})$                  |
| BD( 2) C13 – N82 | 0.6120(sp 1) 0.7909(sp 1)                                | BD*( 2) C13 – N82  | 0.7909(sp1) -0.6120(sp1)                                 |
| BD( 1) C15 – N83 | 0.6079(sp <sup>2.77</sup> ) 0.7940(sp <sup>1.78</sup> )  | BD*( 1) C15 – N83  | 0.7940(sp <sup>2.77</sup> ) -0.6079(sp <sup>1.78</sup> ) |
| BD( 1) C26 – N83 | 0.6106(sp <sup>2.39</sup> )0.7919(sp <sup>1.82</sup> )   | BD*( 1) C26 – N83  | 0.7919(sp <sup>2.39</sup> ) -0.6106(sp <sup>1.82</sup> ) |
| BD( 1) C26 – N84 | 0.6283(sp <sup>2.18</sup> )0.7780(sp <sup>1.77</sup> )   | BD*( 1) C26 – N84  | 0.7780(sp <sup>2.18</sup> ) -0.6283(sp <sup>1.77</sup> ) |
| BD( 1) C33 – N84 | 0.6165(sp <sup>2.31</sup> ) 0.7874 (sp <sup>1.70</sup> ) | BD*( 1) C33 – N84  | 0.7874(sp <sup>2.31</sup> ) -0.6165(sp <sup>1.70</sup> ) |
| BD( 2) C33 – N84 | 0.5796 (sp 1) 0.8149(sp 1)                               | BD*( 2) C33 – N84  | 0.8149(sp 1) -0.5796(sp1)                                |
| BD( 1) C39 – O78 | 0.5643 (sp <sup>3.01</sup> )0.8256(sp <sup>2.23</sup> )  | BD*( 1) C39 – O78  | 0.8256(sp <sup>3.01</sup> ) -0.5643(sp <sup>2.23</sup> ) |
| BD( 1) C43 – N79 | 0.6203 (sp <sup>2.16</sup> )0.7843 (sp <sup>1.35</sup> ) | BD*( 1) C43 – N79  | 0.7843(sp <sup>2.16</sup> ) -0.6203(sp <sup>1.35</sup> ) |
| BD( 2) C43 – N79 | 0.6106 (sp 1)0.7919 (sp 1)                               | BD*( 2) C43 – N79  | 0.7919(sp <sup>1</sup> ) -0.6106(sp <sup>1</sup> )       |
| BD( 1) C45 – N80 | 0.6083 (sp <sup>2.76</sup> ) 0.7937(sp <sup>1.78</sup> ) | BD*( 1) C45 – N80  | 0.7937(sp <sup>2.76</sup> ) -0.6083(sp <sup>1.78</sup> ) |
| BD( 1) C56 – N80 | 0.6106 (sp <sup>2.39</sup> ) 0.7920(sp <sup>1.82</sup> ) | BD*( 1) C56 – N80  | 0.7920(sp <sup>2.39</sup> ) -0.6106(sp <sup>1.82</sup> ) |
| BD( 1) C56 – N81 | 0.6284 (sp <sup>2.18</sup> ) 0.7779(sp <sup>1.77</sup> ) | BD*(1) C56 – N81   | 0.7779(sp <sup>2.18</sup> ) -0.6284(sp <sup>1.77</sup> ) |
| BD( 1) C63 – N81 | 0.6165 (sp <sup>2.31</sup> ) 0.7874(sp <sup>1.70</sup> ) | BD*( 1) C63 – N81  | 0.7874(sp <sup>2.31</sup> ) -0.6165(sp <sup>1.70</sup> ) |
| BD( 2) C63 – N81 | 0.5795 (sp 1) 0.8150(sp 1)                               | BD*( 2) C63 – N81  | 0.8150(sp <sup>1</sup> ) -0.5795(sp <sup>1</sup> )       |
| BD( 1) C65 – O76 | 0.5708 (sp <sup>2.78</sup> ) 0.8211(sp <sup>1.88</sup> ) | BD*( 1) C65 – O76  | 0.8211(sp <sup>2.78</sup> ) -0.5708(sp <sup>1.88</sup> ) |
| BD( 1) C66 – O75 | 0.5709 (sp <sup>2.77</sup> ) 0.8210(sp <sup>1.87</sup> ) | BD*( 1) C66 – O75  | 0.8210(sp <sup>2.77</sup> ) -0.5709(sp <sup>1.87</sup> ) |
| BD( 1) C67 – O78 | 0.5637 (sp <sup>3.80</sup> ) 0.8260(sp <sup>2.87</sup> ) | BD*( 1) C67 – O78  | 0.8260(sp <sup>3.80</sup> ) -0.5637(sp <sup>2.87</sup> ) |
| BD( 1) C71 – O77 | 0.5627 (sp <sup>3.82</sup> ) 0.8266(sp <sup>2.86</sup> ) | BD*( 1) C71 – O 77 | 0.8266(sp <sup>3.82</sup> ) -0.5627(sp <sup>2.86</sup> ) |
| BD(1) N79 – N80  | 0.6886 (sp <sup>3.24</sup> ) 0.7251(sp <sup>2.67</sup> ) | BD*( 1) N79 – N 80 | 0.7251(sp <sup>3.24</sup> ) -0.6886(sp <sup>2.67</sup> ) |
| BD( 1) N82 – N83 | 0.6890 (sp <sup>3.22</sup> ) 0.7248(sp <sup>2.66</sup> ) | BD*( 1) N82 – N 83 | 0.7248(sp <sup>3.22</sup> ) -0.6890(sp <sup>2.66</sup> ) |

| Table S11 Second-Order Perturbation | Stabilization En | nergies $\Delta E(2)$ | for complex <b>1</b> |
|-------------------------------------|------------------|-----------------------|----------------------|
|-------------------------------------|------------------|-----------------------|----------------------|

| Donor | Acceptor | E(2) kcal/mol |
|-------|----------|---------------|
|       |          |               |

| LP (2) O 75  | LP*(7)Zn 2          | 17.23 |
|--------------|---------------------|-------|
| LP (2) O 75  | LP*(8)Zn 2          | 10.27 |
| LP (3) O 75  | BD*(2) C 42 - C 66  | 35.02 |
| LP (2) O 75  | LP*(8)Zn 1          | 26.23 |
| LP (2) O 76  | LP*(7)Zn 1          | 17.78 |
| LP (2) O 76  | LP*(8)Zn 1          | 10.67 |
| LP (3) O 76  | BD*(2) C 12 - C 65  | 33.46 |
| LP (2) O 77  | BD*(2) C 9 - C 10   | 22.84 |
| LP (2) O 78  | BD*(2) C 39 - C 40  | 26.20 |
| LP (1) N 79  | LP*(6)Zn 1          | 17.60 |
| LP (1) N 79  | LP*(7)Zn 1          | 24.53 |
| LP (1) N 80  | BD*(2) C 43 - N 79  | 24.04 |
| LP (1) N 80  | BD*(2) C 56 - C 57  | 39.68 |
| LP (1) N 81  | LP*(9)Zn 1          | 20.31 |
| LP (1) N 81  | LP*(6)Zn 1          | 18.36 |
| LP (1) N 82  | LP*(6)Zn 2          | 17.30 |
| LP ( 1) N 83 | BD*( 2) C 13 - N 82 | 24.21 |
| LP ( 1) N 83 | BD*( 2) C 26 - C 27 | 39.65 |
| LP ( 1) N 84 | LP*( 6)Zn 2         | 18.46 |
| LP ( 4)Cl 3  | LP*( 6)Zn 1         | 70.23 |
|              |                     |       |

 Table S12 Analysis for complex 2: Natural Bond Orbitals and Occupancy

| Valence bond    | Occupancy | Antibond         | Occupancy | bond<br>type |
|-----------------|-----------|------------------|-----------|--------------|
| BD( 1) O5 – C13 | 1.99068   | BD*( 1) O5 – C13 | 0.02629   | Single       |
| BD(1) O6 – C44  | 1.99068   | BD*(1) O6 – C44  | 0.02629   | Single       |
| BD(1) N7 – N8   | 1.97886   | BD*( 1) N7 – N8  | 0.05097   | Single       |
| BD( 1) N7 – C22 | 1.98269   | BD*( 1) N7 – C22 | 0.01440   | Single       |
| BD( 2) N7 – C22 | 1.94131   | BD*( 2) N7 – C22 | 0.26850   | Double       |
| BD( 1) N8 – C24 | 1.97744   | BD*( 1) N8 – C24 | 0.04488   | Single       |
| BD( 1) N8 – C33 | 1.97897   | BD*( 1) N8 – C33 | 0.05233   | Single       |

| BD( 1) N9 – C24  | 1.98020 | BD*( 1) N9 – C24  | 0.03012 | Single    |
|------------------|---------|-------------------|---------|-----------|
| BD( 1) N9 – C31  | 1.98226 | BD*( 1) N9 – C31  | 0.01775 | Single    |
| BD( 2) N9 – C31  | 1.77157 | BD*( 2) N9 – C31  | 0.46294 | Double    |
| BD(1) N10 – N11  | 1.97886 | BD*( 1) N10 – N11 | 0.05097 | Single    |
| BD( 1) N10 – C53 | 1.98269 | BD*( 1) N10 – C53 | 0.01440 | Single    |
| BD( 2) N10 – C53 | 1.94130 | BD*( 2) N10 – C53 | 0.26853 | Double    |
| BD( 1) N11 – C55 | 1.97744 | BD*( 1) N11 – C55 | 0.04488 | Single    |
| BD( 1) N11 – C64 | 1.97897 | BD*( 1) N11 – C64 | 0.05233 | Single    |
| BD( 1) N12 – C55 | 1.98020 | BD*( 1) N12 – C55 | 0.03012 | Single    |
| BD( 1) N12 – C62 | 1.98226 | BD*( 1) N12 – C62 | 0.01775 | Single    |
| BD( 2) N12 – C62 | 1.77160 | BD*( 2) N12 – C62 | 0.46295 | Double    |
| LP( 1)Zn 1       | 1.99905 | LP*( 6)Zn 1       | 0.31783 | Lone pair |
| LP( 2)Zn 1       | 1.99853 | LP*(7)Zn 1        | 0.14137 |           |
| LP( 1)Zn 2       | 1.99905 | LP*( 6)Zn 2       | 0.31783 |           |
| LP( 2)Zn 2       | 1.99853 | LP*(7)Zn 2        | 0.14137 |           |
| LP (1) O5        | 1.91445 |                   |         |           |
| LP ( 2) O5       | 1.85476 |                   |         |           |
| LP (1) O6        | 1.91444 |                   |         |           |
| LP ( 2) O6       | 1.85477 |                   |         |           |
| LP(1) N7         | 1.86314 |                   |         |           |
| LP(1) N8         | 1.69131 |                   |         |           |
| LP(1) N9         | 1.85252 |                   |         |           |
| LP (1) N10       | 1.86313 |                   |         |           |
| LP (1) N11       | 1.69127 |                   |         |           |
| LP (1) N12       | 1.85251 |                   |         |           |
|                  |         |                   |         |           |

# Table S13. Analysis for complex 2: Natural Bond Orbitals and coefficient/hybrids

| Valence bond    | coefficient/hybrids                                      | Antibond         | coefficient/hybrids                                      |
|-----------------|----------------------------------------------------------|------------------|----------------------------------------------------------|
| BD( 1) O5 – C13 | 0.8214(sp <sup>1.86</sup> ) 0.5703(sp <sup>2.79</sup> )  | BD*( 1) O5 – C13 | 0.5703(sp <sup>1.86</sup> ) -0.8214(sp <sup>2.79</sup> ) |
| BD( 1) O6 – C44 | 0.8214 (sp <sup>1.86</sup> ) 0.5703(sp <sup>2.79</sup> ) | BD*( 1) O6 – C44 | 0.5703(sp <sup>1.86</sup> ) -0.8214(sp <sup>2.79</sup> ) |
| BD(1) N7 – N8   | 0.6884 (sp <sup>3.25</sup> ) 0.7253(sp <sup>2.67</sup> ) | BD*( 1) N7 – N8  | 0.7253(sp <sup>3.25</sup> ) -0.6884(sp <sup>2.67</sup> ) |

| BD(1) N7 – C22   | 0.7844 (sp <sup>1.35</sup> ) 0.6202(sp <sup>2.16</sup> ) | BD*( 1) N7 – C22  | 0.6202(sp <sup>1.35</sup> ) -0.7844(sp <sup>2.16</sup> ) |
|------------------|----------------------------------------------------------|-------------------|----------------------------------------------------------|
| BD( 2) N7 – C22  | 0.7929(sp 1) 0.6093(sp 1)                                | BD*( 2) N7 – C22  | 0.6093 (sp 1) -0.7929 (sp 1)                             |
| BD(1) N8 – C24   | 0.7918(sp <sup>1.82</sup> ) 0.6107(sp <sup>2.38</sup> )  | BD*( 1) N8 – C24  | 0.6107(sp <sup>1.82</sup> ) -0.7918(sp <sup>2.38</sup> ) |
| BD( 1) N8 – C33  | 0.7937 (sp <sup>1.78</sup> ) 0.6083(sp <sup>2.76</sup> ) | BD*( 1) N8 – C33  | 0.6083(sp <sup>1.78</sup> ) -0.7937(sp <sup>2.76</sup> ) |
| BD(1) N9 – C24   | 0.7779 (sp <sup>1.77</sup> ) 0.6284(sp <sup>2.18</sup> ) | BD*( 1) N9 - C24  | 0.6284(sp <sup>1.77</sup> ) -0.7779(sp <sup>2.18</sup> ) |
| BD(1) N9 – C31   | 0.7873 (sp <sup>1.71</sup> ) 0.6165(sp <sup>2.31</sup> ) | BD*( 1) N9 – C31  | 0.6165(sp <sup>1.71</sup> ) -0.7873(sp <sup>2.31</sup> ) |
| BD( 2) N9 – C31  | 0.8151 (sp 1) 0.5794 (sp 1)                              | BD*( 2) N9 – C31  | 0.5794 (sp 1) -0.8151 (sp 1)                             |
| BD(1) N10 – N11  | 0.6884 (sp <sup>3.25</sup> ) 0.7253(sp <sup>2.67</sup> ) | BD*(1) N10 – N11  | 0.7253(sp <sup>3.25</sup> ) -0.6884(sp <sup>2.67</sup> ) |
| BD(1) N10 – C53  | 0.7844 (sp <sup>1.35</sup> ) 0.6202(sp <sup>2.16</sup> ) | BD*( 1) N10 – C53 | 0.6202(sp <sup>1.35</sup> ) -0.7844(sp <sup>2.16</sup> ) |
| BD( 2) N10 – C53 | 0.7929 (sp 1) 0.6093(sp 1)                               | BD*( 2) N10 – C53 | $00.6093(sp^{-1}) - 0.7929 (sp^{-1})$                    |
| BD( 1) N11 – C55 | 0.7918 (sp <sup>1.82</sup> ) 0.6107(sp <sup>2.38</sup> ) | BD*( 1) N11 – C55 | 0.6107(sp <sup>1.82</sup> ) -0.7918(sp <sup>2.38</sup> ) |
| BD(1) N11 – C64  | 0.7937 (sp <sup>1.78</sup> ) 0.6083(sp <sup>2.76</sup> ) | BD*( 1) N11 – C64 | 0.6083(sp <sup>1.78</sup> ) -0.7937(sp <sup>2.76</sup> ) |
| BD(1) N12 – C55  | 0.7779 (sp <sup>1.77</sup> ) 0.6284(sp <sup>2.18</sup> ) | BD*( 1) N12 – C55 | 0.6284(sp <sup>1.77</sup> ) -0.7779(sp <sup>2.18</sup> ) |
| BD(1) N12 - C62  | 0.7873 (sp <sup>1.71</sup> ) 0.6165(sp <sup>2.31</sup> ) | BD*( 1) N12 – C62 | 0.6165(sp <sup>1.71</sup> ) -0.7873(sp <sup>2.31</sup> ) |
| BD( 2) N12 – C62 | 0.8151 (sp 1) 0.5793(sp 1)                               | BD*( 2) N12 - C62 | 0.5793(sp 1) -0.8151(sp 1)                               |
|                  |                                                          |                   |                                                          |

Table S14 Second-Order Perturbation Stabilization Energies  $\triangle E(2)$  for complex 2

| Donor             | Acceptor           | E(2) kcal/mol |
|-------------------|--------------------|---------------|
| LP (2) O 5        | LP*(8)Zn 1         | 26.54         |
| LP (1) N 7        | 154. LP*(6)Zn 1    | 17.51         |
| LP (1) N 7        | 155. LP*(7)Zn 1    | 24.95         |
| LP (1) N 9        | LP*(6)Zn 1         | 18.44         |
| LP (1) N 9        | LP*(7)Zn 1         | 16.63         |
| LP(1)N 9          | LP*(9)Zn 1         | 20.51         |
| LP (2) O 5        | LP*(7)Zn 2         | 17.19         |
| LP (2) O 5        | LP*(8)Zn 2         | 10.84         |
| BD (2) N 9 - C 31 | BD*(2) C 24 - C 25 | 25.86         |
| BD (2) N 9 - C 31 | BD*(2) C 27 - C 29 | 10.06         |
| LP (3) O 5        | BD*(2) C 13 - C 14 | 34.09         |

| LP (1) N 8   | BD*(2) N 7 - C 22  | 23.75 |
|--------------|--------------------|-------|
| LP (1) N 8   | BD*(2) C 24 - C 25 | 39.80 |
| LP (2) O 6   | LP*(7)Zn 1         | 17.19 |
| . LP (2) O 6 | LP*(8)Zn 1         | 10.84 |
| LP (2) O 6   | LP*(8)Zn 2         | 26.53 |
| LP (1) N 10  | LP*(6)Zn 2         | 17.51 |
| LP (1) N 10  | LP*(7)Zn 2         | 24.94 |
| LP (1) N 12  | LP*(6)Zn 2         | 18.44 |
| LP (1) N 12  | LP*(7)Zn 2         | 6.65  |
| LP (1) N 12  | LP*(9)Zn 2         | 20.50 |
|              |                    |       |

 Table S15 Analysis for complex 3: Natural Bond Orbitals and Occupancy

| Valence bond      | Occupancy | Antibond          | Occupancy | bond<br>type |
|-------------------|-----------|-------------------|-----------|--------------|
| BD ( 1) O3 – C5   | 1.9902    | BD*( 1) O3 – C5   | 0.02524   | Single       |
| BD ( 1) O4 – C17  | 1.9902    | BD*( 1) O4 – C17  | 0.02524   | Single       |
| BD ( 1) N28 – C41 | 1.9800    | BD*( 1) N28 – C41 | 0.02990   | Single       |
| BD ( 1) N28 – C77 | 1.9822    | BD*( 1) N28 – C77 | 0.01770   | Single       |
| BD ( 2) N28 – C77 | 1.77310   | BD*( 2) N28 – C77 | 0.46568   | Double       |
| BD ( 1) N29 – N30 | 1.97876   | BD*( 1) N29 – N30 | 0.05178   | Single       |
| BD ( 1) N29 – C31 | 1.98236   | BD*( 1) N29 – C31 | 0.01460   | Single       |
| BD ( 2) N29 – C31 | 1.94103   | BD*( 2) N29 – C31 | 0.28270   | Double       |
| BD ( 1) N30 – C35 | 1.97929   | BD*( 1) N30 – C35 | 0.05222   | Single       |
| BD ( 1) N30 – C41 | 1.97757   | BD*( 1) N30 – C41 | 0.04450   | Single       |
| BD (1) N48 – N49  | 1.97876   | BD*( 1) N48 – N49 | 0.05178   | Single       |
| BD ( 1) N48 – C67 | 1.98236   | BD*( 1) N48 – C67 | 0.01460   | Single       |
| BD ( 2) N48 – C67 | 1.94103   | BD*( 2) N48 – C67 | 0.28276   | Double       |
| BD ( 1) N49 – C56 | 1.97929   | BD*( 1) N49 – C56 | 0.05222   | Single       |
| BD ( 1) N49 – C86 | 1.97757   | BD*( 1) N49 – C86 | 0.04450   | Single       |
| BD ( 1) C52 – N85 | 1.98224   | BD*( 1) C52 – N85 | 0.01770   | Single       |
| BD ( 2) C52 – N85 | 1.77309   | BD*( 2) C52 – N85 | 0.46570   | Double       |

| BD (1) N85 – C86 | 1.98008 | BD*( 1) N85 – C86 | 0.02989 | Single    |
|------------------|---------|-------------------|---------|-----------|
| LP (1)Zn 1       | 1.99905 | LP*( 6)Zn 1       | 0.31922 | Lone pair |
| LP (2)Zn 1       | 1.99854 | LP*( 7)Zn 1       | 0.14343 |           |
| LP (1)Zn 2       | 1.99905 | LP*( 6)Zn 2       | 0.31919 |           |
| LP (2)Zn 2       | 1.99852 | LP*(7)Zn 2        | 0.14341 |           |
| LP(1)O 3         | 1.91579 |                   |         |           |
| LP (2) O 3       | 1.85584 |                   |         |           |
| LP (1) O 4       | 1.91578 |                   |         |           |
| LP (2) O 4       | 1.85584 |                   |         |           |
| LP (1) N 28      | 1.85155 |                   |         |           |
| LP (1) N 29      | 1.86288 |                   |         |           |
| LP (1) N 30      | 1.68823 |                   |         |           |
| LP (1) N 48      | 1.86287 |                   |         |           |
| LP (1) N 49      | 1.68825 |                   |         |           |
| LP (1) N 85      | 1.85154 |                   |         |           |

 Table S16 Analysis for complex 3: Natural Bond Orbitals and coefficient/hybrids

| Valence bond      | coefficient/hybrids                                     | Antibond          | coefficient/hybrids                                      |
|-------------------|---------------------------------------------------------|-------------------|----------------------------------------------------------|
| BD ( 1) O3 – C5   | 0.8216(sp <sup>1.83</sup> ) 0.5700(sp <sup>2.81</sup> ) | BD*( 1) O3 – C5   | 0.5700(sp <sup>1.83</sup> ) -0.8216(sp <sup>2.81</sup> ) |
| BD (1) O4 – C17   | 0.8216(sp <sup>1.83</sup> ) 0.5700(sp <sup>2.81</sup> ) | BD*(1) O4 – C17   | 0.5700(sp <sup>1.83</sup> ) -0.8216(sp <sup>2.81</sup> ) |
| BD ( 1) N28 – C41 | 0.7778(sp <sup>1.78</sup> ) 0.6285(sp <sup>2.18</sup> ) | BD*( 1) N28 - C41 | 0.6285(sp <sup>1.78</sup> ) -0.7778(sp <sup>2.18</sup> ) |
| BD ( 1) N28 – C77 | 0.7874(sp <sup>1.70</sup> ) 0.6165(sp <sup>2.31</sup> ) | BD*( 1) N28 - C77 | 0.6165(sp <sup>1.70</sup> ) -0.7874(sp <sup>2.31</sup> ) |
| BD ( 2) N28 – C77 | 0.8159(sp 1) 0.5781(sp 1)                               | BD*( 2) N28 – C77 | 0.5781(sp 1) -0.8159(sp 1)                               |
| BD ( 1) N29 – N30 | 0.6872(sp <sup>3.30</sup> ) 0.7265(sp <sup>2.65</sup> ) | BD*( 1) N29 – N30 | 0.7265(sp <sup>3.30</sup> ) -0.6872(sp <sup>2.65</sup> ) |
| BD ( 1) N29 – C31 | 0.7841(sp <sup>1.35</sup> ) 0.6206(sp <sup>2.17</sup> ) | BD*( 1) N29 - C31 | 0.6206(sp <sup>1.35</sup> ) -0.7841(sp <sup>2.17</sup> ) |
| BD ( 2) N29 – C31 | 0.7946(sp 1) 0.6071(sp 1)                               | BD*( 2) N29 – C31 | 0.6071(sp 1) -0.7946(sp 1)                               |
| BD ( 1) N30 – C35 | 0.7933(sp <sup>1.77</sup> ) 0.6088(sp <sup>2.75</sup> ) | BD*( 1) N30 – C35 | 0.6088(sp <sup>1.77</sup> ) -0.7933(sp <sup>2.75</sup> ) |
| BD ( 1) N30 – C41 | 0.7920(sp <sup>1.81</sup> ) 0.6106(sp <sup>2.38</sup> ) | BD*( 1) N30 – C41 | 0.6106(sp <sup>1.81</sup> ) -0.7920(sp <sup>2.38</sup> ) |
| BD (1) N48 – N49  | 0.6872(sp <sup>3.30</sup> ) 0.7265(sp <sup>2.65</sup> ) | BD*( 1) N48 – N49 | 0.7265(sp <sup>3.30</sup> ) -0.6872(sp <sup>2.65</sup> ) |
| BD ( 1) N48 – C67 | 0.7841(sp <sup>1.35</sup> ) 0.6206(sp <sup>2.17</sup> ) | BD*( 1) N48 – C67 | 0.6206(sp <sup>1.35</sup> ) -0.7841(sp <sup>2.17</sup> ) |
| BD ( 2) N48 – C67 | 0.7946(sp 1) 0.6071(sp 1)                               | BD*( 2) N48 - C67 | 0.6071(sp 1) -0.7946(sp 1)                               |

| BD (1) N49 – C56  | 0.7933 (sp <sup>1.77</sup> ) 0.6088(sp <sup>2.75</sup> ) | BD*( 1) N49 – C56 | 0.6088(sp <sup>1.77</sup> ) -0.7933(sp <sup>2.75</sup> ) |
|-------------------|----------------------------------------------------------|-------------------|----------------------------------------------------------|
| BD (1) N49 – C86  | 0.7920 (sp <sup>1.81</sup> ) 0.6106(sp <sup>2.38</sup> ) | BD*( 1) N49 – C86 | 0.6106(sp <sup>1.81</sup> ) -0.7920(sp <sup>2.38</sup> ) |
| BD ( 1) C52 – N85 | 0.6165(sp <sup>2.31</sup> ) 0.7874(sp <sup>1.70</sup> )  | BD*( 1) C52 – N85 | 0.7874(sp <sup>2.31</sup> ) -0.6165(sp <sup>1.70</sup> ) |
| BD ( 2) C52 – N85 | 0.5781(sp 1) 0.8160 (sp 1)                               | BD*( 2) C52 – N85 | 0.8160(sp 1) -0.5781(sp 1)                               |
| BD (1) N85 – C86  | 0.7778(sp <sup>1.78</sup> ) 0.6285(sp <sup>2.18</sup> )  | BD*( 1) N85 – C86 | 0.6285(sp <sup>1.78</sup> ) -0.7778(sp <sup>2.18</sup> ) |
|                   |                                                          |                   |                                                          |

## Table S17 Second-Order Perturbation Stabilization Energies $\triangle E(2)$ for complex 3

| Donor            | Acceptor          | E(2) kcal/mol |
|------------------|-------------------|---------------|
| LP (2) O 3       | LP*(8)Zn 1        | 27.38         |
| LP (1) N 48      | LP*(6)Zn 1        | 17.88         |
| LP (1) N 48      | LP*(7)Zn 1        | 27.21         |
| LP (1) N 85      | LP*(6)Zn 1        | 18.44         |
| LP (1) N 85      | LP*(9)Zn 1        | 20.30         |
| LP (2) O 3       | LP*(7)Zn 2        | 13.37         |
| LP (2) O 3       | LP*(8)Zn 2        | 12.77         |
| BD (2) C 5 - C38 | BD*(2) C 6 - C 7  | 20.40         |
| BD (2) C 5 - C38 | BD*(2) C 8 - C 10 | 12.96         |
| BD (2) C 5 - C38 | BD*(2) N48 - C67  | 30.58         |
| BD (2) C 8 - C10 | BD*(2) C 5 - C38  | 20.94         |
| BD (2) C 8 - C10 | BD*(2) C 6 - C 7  | 15.42         |
| BD (2) C50 - C69 | BD*(2) C52 - N85  | 39.45         |
| LP (3) O 3       | BD*(2) C 5 - C38  | 39.18         |
| LP (1) N 49      | BD*(2) N48 - C67  | 23.58         |
| LP (1) N 49      | BD*(2) C54 - C86  | 41.24         |
| LP (2) O 4       | LP*(7)Zn 1        | 13.33         |
| LP (2) O 4       | LP*(8)Zn 1        | 12.79         |
| LP (2) O 4       | LP*(8)Zn 2        | 27.40         |
| LP (1) N 28      | LP*(6)Zn 2        | 18.45         |
| LP (1) N 29      | LP*(6)Zn 2        | 17.88         |
| LP (1) N 29      | LP*(7)Zn 2        | 27.20         |
|                  |                   |               |

| Valence bond               | Occupancy          | Antibond                   | Occupancy          | bond<br>type |
|----------------------------|--------------------|----------------------------|--------------------|--------------|
| BD (1) O5 – C13            | 1.99090            | BD* (1) O5 – C13           | 0.02632            | Single       |
| BD (1) O6 – C44            | 1.99090            | BD* ( 1) O6 – C44          | 0.02632            | Single       |
| BD ( 1) N7 – N8            | 1.97896            | BD* ( 1) N7 – N8           | 0.05091            | Single       |
| BD ( 1) N7 – C22           | 1.98284            | BD* ( 1) N7 – C22          | 0.01444            | Single       |
| BD ( 2) N7 – C22           | 1.94140            | BD* ( 2) N7 – C22          | 0.26619            | Double       |
| BD (1) N8 – C24            | 1.97740            | BD* ( 1) N8 – C24          | 0.04495            | Single       |
| BD (1) N8 – C33            | 1.97887            | BD* ( 1) N8 – C33          | 0.05237            | Single       |
| BD (1) N9 – C24            | 1.98025            | BD* (1) N9 – C24           | 0.03019            | Single       |
| BD (1) N9 – C31            | 1.98226            | BD* (1) N9 – C31           | 0.01778            | Single       |
| BD ( 2) N9 – C31           | 1.77159            | BD* ( 2) N9 – C31          | 0.46347            | Double       |
| BD (1) N10 – N11           | 1.97897            | BD* (1) N10 – N11          | 0.05091            | Single       |
| BD ( 1) N10 – C53          | 1.98284            | BD* ( 1) N10 – C53         | 0.01444            | Single       |
| BD ( 2) N10 – C53          | 1.94140            | BD* ( 2) N10 – C53         | 0.26619            | Double       |
| BD ( 1) N11 – C55          | 1.97740            | BD* ( 1) N11 – C55         | 0.04495            | Single       |
| BD (1) N11 – C64           | 1.97887            | BD* (1) N11 – C64          | 0.05237            | Single       |
| BD ( 1) N12 – C55          | 1.98025            | BD* (1) N12 – C55          | 0.03019            | Single       |
| BD (1) N12 – C62           | 1.98226            | BD* (1) N12 - C62          | 0.01778            | Single       |
| BD ( 2) N12 – C62          | 1.77160            | BD* ( 2) N12 – C62         | 0.46348            | Double       |
| LP ( 1)Zn 1<br>LP ( 2)Zn 1 | 1.99905<br>1.99852 | LP*( 6)Zn 1<br>LP*( 7)Zn 1 | 0.31824<br>0.14120 | Lone pair    |
| LP ( 1)Zn 2                | 1.99905            | LP*( 6)Zn 2                | 0.31823            |              |
| LP ( 2)Zn 2                | 1.99852            | LP*( 7)Zn 2                | 0.14120            |              |
| LP (1) O 5                 | 1.85487            |                            |                    |              |
| LP (2) O 5                 | 1.79385            |                            |                    |              |
| LP (1) O 6                 | 1.91457            |                            |                    |              |
| LP (2) O 6                 | 1.85487            |                            |                    |              |
| LP(1)N7                    | 1.86317            |                            |                    |              |

## Table S18 Analysis for complex 4: Natural Bond Orbitals and Occupancy

| LP(1) N 8  | 1.69184 |
|------------|---------|
| LP(1) N 9  | 1.85225 |
| LP(1) N 10 | 1.86317 |
| LP(1) N 11 | 1.69183 |
| LP(1) N 12 | 1.85224 |

### Table S19 Analysis for complex 4: Natural Bond Orbitals and coefficient/hybrids

| Valence bond      | coefficient/hybrids                                      | Antibond           | coefficient/hybrids                                       |
|-------------------|----------------------------------------------------------|--------------------|-----------------------------------------------------------|
| BD (1) O5 – C13   | 0.8215(sp <sup>1.85</sup> ) 0.5702(sp <sup>2.80</sup> )  | BD* (1) O5 – C13   | 0.5702 (sp <sup>1.85</sup> ) - 0.82 (sp <sup>2.80</sup> ) |
| BD (1) O6 – C44   | 0.8215(sp <sup>1.85</sup> ) 0.5702(sp <sup>2.80</sup> )  | BD* (1) O6 – C44   | 0.5702(sp <sup>1.85</sup> ) -0.8215(sp <sup>2.80</sup> )  |
| BD (1) N7 – N8    | 0.6889(sp <sup>3.23</sup> ) 0.7249(sp <sup>2.67</sup> )  | BD* ( 1) N7 – N8   | 0.7249(sp <sup>3.23</sup> ) -0.6889(sp <sup>2.67</sup> )  |
| BD (1) N7 – C22   | 0.7844(sp <sup>1.35</sup> ) 0.6202(sp <sup>2.16</sup> )  | BD* (1) N7 – C22   | 0.6202(sp <sup>1.35</sup> ) -0.7844(sp <sup>2.16</sup> )  |
| BD ( 2) N7 – C22  | 0.7924(sp 1) 0.6100(sp 1)                                | BD* ( 2) N7 – C22  | 0.6100(sp 1) -0.7924(sp 1)                                |
| BD (1) N8 – C24   | 0.7918(sp <sup>1.82</sup> ) 0.6108(sp <sup>2.38</sup> )  | BD* ( 1) N8 – C24  | 0.6108(sp <sup>1.82</sup> ) -0.7918(sp <sup>2.38</sup> )  |
| BD (1) N8 – C33   | 0.7939(sp <sup>1.78</sup> ) 0.6081(sp <sup>2.77</sup> )  | BD* ( 1) N8 – C33  | 0.6081(sp <sup>1.78</sup> ) -0.7939(sp <sup>2.77</sup> )  |
| BD (1) N9 – C24   | 0.7780(sp <sup>1.77</sup> ) 0.6282(sp <sup>2.18</sup> )  | BD* (1) N9 – C24   | 0.6282(sp <sup>1.77</sup> ) -0.7780(sp <sup>2.18</sup> )  |
| BD (1) N9 – C31   | 0.7874(sp <sup>1.70</sup> ) 0.616 (sp <sup>2.31</sup> )  | BD* (1) N9 – C31   | 0.616(sp <sup>1.70</sup> ) -0.7874(sp <sup>2.31</sup> )   |
| BD ( 2) N9 – C31  | 0.8151 (sp 1) 0.5793(sp 1)                               | BD* ( 2) N9 – C31  | 0.57931 (sp 1) -0.8151(sp 1)                              |
| BD (1) N10 – N11  | 0.6889(sp <sup>3.23</sup> ) 0.7249(sp <sup>2.67</sup> )  | BD* (1) N10 – N11  | 0.7249(sp <sup>3.23</sup> ) -0.6889(sp <sup>2.67</sup> )  |
| BD ( 1) N10 – C53 | 0.7844 (sp <sup>1.35</sup> ) 0.6202(sp <sup>2.16</sup> ) | BD* ( 1) N10 – C53 | 0.6202(sp <sup>1.35</sup> ) -0.7844(sp <sup>2.16</sup> )  |
| BD ( 2) N10 – C53 | 0.7924 (sp 1) 0.6100(sp 1)                               | BD* ( 2) N10 – C53 | 0.6100(sp 1) -0.7924(sp 1)                                |
| BD ( 1) N11 – C55 | 0.7918 (sp <sup>1.82</sup> ) 0.6108(sp <sup>2.38</sup> ) | BD* ( 1) N11 – C55 | 0.6108(sp <sup>1.82</sup> ) -0.7918(sp <sup>2.38</sup> )  |
| BD (1) N11 – C64  | 0.7939 (sp <sup>1.78</sup> ) 0.6081(sp <sup>2.77</sup> ) | BD* (1) N11 – C64  | 0.608(sp <sup>1.78</sup> ) -0.7939(sp <sup>2.77</sup> )   |
| BD ( 1) N12 – C55 | 0.7780 (sp <sup>1.77</sup> ) 0.6282(sp <sup>2.18</sup> ) | BD* ( 1) N12 – C55 | 0.6282(sp <sup>1.77</sup> ) -0.7780(sp <sup>2.18</sup> )  |
| BD (1) N12 – C62  | 0.7874 (sp <sup>1.70</sup> ) 0.6164(sp <sup>2.31</sup> ) | BD* (1) N12 – C62  | 0.6164(sp <sup>1.70</sup> ) -0.7874(sp <sup>2.31</sup> )  |
| BD ( 2) N12 – C62 | 0.8151 (sp 1) 0.5793(sp 1)                               | BD* ( 2) N12 – C62 | 0.5793 (sp 1) -0.8151(sp 1)                               |

## **Table S20** Second-Order Perturbation Stabilization Energies $\triangle E(2)$ for complex 4

| Donor      | Acceptor   | E(2) kcal/mol |
|------------|------------|---------------|
| LP (2) O 5 | LP*(8)Zn 1 | 26.64         |
| LP (1) N 7 | LP*(6)Zn 1 | 17.58         |

| LP (1) N 7    | LP*(7)Zn 1       | 24.86 |
|---------------|------------------|-------|
| LP (1) N 9    | LP*(6)Zn 1       | 18.52 |
| LP (1) N 9    | LP*(9)Zn 1       | 20.52 |
| LP (2) O 5    | LP*(7)Zn 2       | 17.23 |
| LP (2) O 5    | LP*(8)Zn 2       | 10.55 |
| LP (3) O 5    | BD*(2) C3 – C14  | 34.75 |
| LP (1) N 8    | BD*(2) N7 – C22  | 23.87 |
| LP (1) N 8    | BD*(2) C24 – C25 | 39.38 |
| LP (2) O 6    | LP*(7)Zn 1       | 17.23 |
| LP (2) O 6    | LP*(8)Zn 1       | 10.56 |
| . LP (1) N 10 | LP*(6)Zn 2       | 17.59 |
| LP (1) N 10   | LP*(7)Zn 2       | 24.86 |
| LP ( 2) O 6   | LP*(8)Zn 2       | 26.64 |
| LP ( 1) N 12  | LP*(6)Zn 2       | 18.52 |
| LP ( 1) N 12  | LP*(9)Zn 2       | 20.52 |
| LP ( 3) O 6   | BD*(2) C44 – C45 | 34.75 |
| LP(1)N 11     | BD*(2) N10 – C53 | 23.87 |
| LP(1)N 11     | BD*(2) C55 – C56 | 39.38 |
|               |                  |       |



**Figure S22.** X–band EPR spectrum of phenoxyl radical complex derived from 1 in acetonitrile at 25°C



Figure S23 UV-vis spectral change observed after the oxidation of complex 2 (20  $\mu$ M) in presence of CAN 1equi to 3 equivalent in acetonitrile solvent at 25°C.



Figure S24 UV-vis spectral change observed after the oxidation of complex 3 (20  $\mu$ M) in presence of CAN 1equi to 3 e equivalent in acetonitrile solvent at 25°C.



Figure S25 UV-vis spectral change observed after the oxidation of complex 4 (20  $\mu$ M) in presence of CAN 1equi to 3 equivalent in acetonitrile solvent at 25°C.



**Figure S26.** UV-vis spectra in range (300-500 nm): (i) **2** ( $1 \times 10^{-4}$ M) in acetonitrile; (ii) 3,5-DTBC ( $1 \times 10^{-2}$ M) in acetonitrile; (iii) changes in UV-vis spectra of complex **2** upon addition of 100-fold 3,5-DTBC for up to 2 hours of reaction in dioxygen-saturated acetonitrile at 25 °C.



**Figure S27.** UV-vis spectra in range (300-500 nm): (i) **3** ( $1 \times 10^{-4}$ M) in acetonitrile; (ii) 3,5-DTBC ( $1 \times 10^{-2}$ M) in acetonitrile; (iii) changes in UV-vis spectra of complex **3** upon addition of 100-fold 3,5-DTBC for up to 2 hours of reaction in dioxygen-saturated acetonitrile at 25 °C.



**Figure S28.** UV-vis spectra in range (300-500 nm): (i) **4** ( $1 \times 10^{-4}$ M) in acetonitrile; (ii) 3,5-DTBC ( $1 \times 10^{-2}$ M) in acetonitrile; (iii) changes in UV-vis spectra of complex **4** upon addition of 100-fold 3,5-DTBC for up to 2 hours of reaction in dioxygen-saturated acetonitrile at 25 °C.



**Figure S29.** UV-vis spectral changes for the oxidation of 2-aminophenol  $(1 \times 10^{-2} \text{ mol dm}^{-3})$  catalyzed by the complex **2**  $(1 \times 10^{-4} \text{ mol dm}^{-3})$  for up to 2 hours of reaction in dioxygen-saturated acetonitrile at 25 °C.



**Figure S30.** UV-vis spectral changes for the oxidation of 2-aminophenol  $(1 \times 10^{-2} \text{ mol dm}^{-3})$  catalyzed by the complex **3**  $(1 \times 10^{-4} \text{ mol dm}^{-3})$  for up to 2 hours of reaction in dioxygen-saturated acetonitrile at 25 °C.



**Figure S31.** UV-vis spectral changes for the oxidation of 2-aminophenol  $(1 \times 10^{-2} \text{ mol dm}^{-3})$  catalyzed by the complex 4  $(1 \times 10^{-4} \text{ mol dm}^{-3})$  for up to 2 hours of reaction in dioxygen-saturated acetonitrile at 25 °C.



Figure S32. Plot of the initial rates versus substrate concentrations of 3,5-DTBC for the oxidation reaction catalyzed by complex 2.



**Figure S33.** Plot of the initial rates versus substrate concentrations of 3,5-DTBC for the oxidation reaction catalyzed by complex **3**.





**Figure S35.** Plot of the initial rates versus substrate concentrations for the oxidation of 2-amino phenol by complex **2**.



**Figure S37.** Plot of the initial rates versus substrate concentrations for the oxidation of 2-amino phenol by complex **4**.

**Table S21.** Crystal data and structural refinement parameters for complexes  $[Zn_2(OMe-Phimp)_2(Cl)_2]$  (1) and  $[Zn_2(N-Phimp)_2(Cl)_2] \cdot CH_3CN$  (3·CH<sub>3</sub>CN).

|                                    | 1                                                              |                                                                                 |
|------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------|
|                                    | <b>3</b> ·CH <sub>3</sub> CN                                   |                                                                                 |
| Empirical                          | C <sub>38</sub> H <sub>32</sub> Cl <sub>2</sub> N <sub>6</sub> | C <sub>44</sub> H <sub>32</sub> Cl <sub>2</sub> N <sub>6</sub> O <sub>2</sub> Z |
| formula                            | $O_4Zn_2$                                                      | $n_2$                                                                           |
| Formula                            | 838.38                                                         | 919.49                                                                          |
| weight                             |                                                                |                                                                                 |
| Temperature                        | 293(2)                                                         | 296(2)                                                                          |
| /K                                 |                                                                |                                                                                 |
| Л (Å) (Мо-                         | 0.71073                                                        | 0.71073                                                                         |
| Κα)                                |                                                                |                                                                                 |
| Crystal                            | Triclinic                                                      | orthorhombic                                                                    |
| system                             |                                                                |                                                                                 |
| Space group                        | P -1                                                           | P c a 21                                                                        |
| A (Å)                              | 11.506(7)                                                      | 19.314(4)                                                                       |
| <i>B</i> (Å)                       | 11.966(7)                                                      | 12.669(3)                                                                       |
| C (Å)                              | 15.127(9)                                                      | 17.150(4)                                                                       |
| $\alpha$ (°)                       | 84.49(3)                                                       | 90.00                                                                           |
| γ (°)                              | 63.54(3)                                                       | 90.00                                                                           |
| <i>B</i> (°)                       | 89.19(3)                                                       | 90.00                                                                           |
| $V(Å^3)$                           | 1854.9(19)                                                     | 4196.4(16)                                                                      |
| Z                                  | 2                                                              | 4                                                                               |
| $\rho_{\rm calc} ({\rm gcm}^{-3})$ | 1.501                                                          | 1.455                                                                           |
| F(000)                             | 856.0                                                          | 1880.0                                                                          |
| Theta range                        | 1.45-26.94                                                     | 1.61-26.420                                                                     |
| Index                              | −11< <i>h</i> <11,                                             | −23< <i>h</i> < 13,                                                             |
| ranges                             | -12 < k < 12,                                                  | -14 < k < 15,                                                                   |
| -                                  | -15< <i>l</i> < 13                                             | -21< <i>l</i> < 21                                                              |

| Data/restrain                        | 4361/0/244 | 6602/157/497 |
|--------------------------------------|------------|--------------|
| ts/par.                              |            |              |
| $GOF^{a}$ on $F^{2}$                 | 0.882      | 0.940        |
| <i>R</i> 1 <sup>b</sup> [ <i>I</i> > | 0.0439     | 0.0553       |
| $2\sigma(I)$ ]                       |            |              |
| R1[all data]                         | 0.0754     | 0.1223       |
| $wR2^{c}[I>]$                        | 0.1111     | 0.1296       |
| $2\sigma(I)$ ]                       |            |              |
| wR2 [all                             | 0.1408     | 0.1699       |
| data]                                |            |              |
|                                      |            |              |

 $GOF = \left[ \sum [w(F_o^2 - F_c^2)^2] / M - N \right]^{1/2} (M = \text{number of reflections}, N = \text{number of parameters refined}). {}^{\mathbf{b}}R1 = \sum ||F_o| - |F_c|| / \sum |F_o| . {}^{\mathbf{c}}wR2 = \left[ \sum [w(F_o^2 - F_c^2)^2] / \sum [(F_o^2)^2] \right]^{1/2}.$ 



**Figure S38.** Intermolecular and intramolecular hydrogen bonding network between chloride ion and aryl hydrogen in complex **1**.



**Figure S39.** Intermolecular and intramolecular hydrogen bonding network between chloride ion and aryl hydrogen in complex **3** CH<sub>3</sub>CN.



**Figure S40.** The HOMO–LUMO energy gaps for the complexes **1**, **2**, **3** CH<sub>3</sub>CN, and **4**. The green and reddish brown color part of the FMO plots give rise to the different phases of the molecular wave functions however the isovalue was 0.02 au.



Complex 1

Complex 3.CH<sub>3</sub>CN

Figure S41. Plot between absorbance and time (sec) of phenoxyl radical decomposition rate of complexes 1 and  $3.CH_3CN$ 



Figure S42. Spin density plot of oxidised  $(1^+)$  and reduced  $(1^-)$  species

Table S22. Coordinates of the optimized structures of the complexes 1, 2, 3. CH<sub>3</sub>CN and 4

| Complex 1 | (B3LYP/L | ANL2DZ) |
|-----------|----------|---------|
|-----------|----------|---------|

| 30 | -1.225056000 | 0.936308000  | -0.519451000 |  |
|----|--------------|--------------|--------------|--|
| 30 | 1.297242000  | -0.943411000 | -0.575741000 |  |
| 17 | -2.410878000 | 2.169359000  | -2.164577000 |  |
| 17 | 2.484496000  | -2.058350000 | -2.297291000 |  |
| 6  | 1.200518000  | 3.229696000  | -1.592897000 |  |
| 1  | 0.165111000  | 3.241759000  | -1.925019000 |  |
| 6  | 2.039987000  | 4.316657000  | -1.875323000 |  |
| 1  | 1.633000000  | 5.166053000  | -2.415215000 |  |
| 6  | 3.393843000  | 4.287018000  | -1.470205000 |  |
| 6  | 3.883623000  | 3.164321000  | -0.796155000 |  |
| 1  | 4.931153000  | 3.154102000  | -0.504204000 |  |
| 6  | 3.050569000  | 2.052477000  | -0.505134000 |  |
| 6  | 3.674868000  | 0.939306000  | 0.196498000  |  |
| 1  | 4.714947000  | 1.085557000  | 0.496727000  |  |

| 6 | 5.175810000  | -1.274520000 | 1.208083000  |
|---|--------------|--------------|--------------|
| 6 | 5.867250000  | -0.845174000 | 2.355793000  |
| 1 | 5.308724000  | -0.474441000 | 3.211697000  |
| 6 | 7.274193000  | -0.903479000 | 2.378592000  |
| 1 | 7.815377000  | -0.576395000 | 3.262710000  |
| 6 | 7.977403000  | -1.381038000 | 1.255041000  |
| 1 | 9.063653000  | -1.423507000 | 1.273264000  |
| 6 | 7.275936000  | -1.800017000 | 0.105634000  |
| 1 | 7.819045000  | -2.164520000 | -0.762227000 |
| 6 | 5.870963000  | -1.747856000 | 0.075696000  |
| 1 | 5.308101000  | -2.057947000 | -0.802629000 |
| 6 | 2.932203000  | -2.312417000 | 1.503732000  |
| 6 | 3.442637000  | -3.376331000 | 2.290533000  |
| 1 | 4.478178000  | -3.373319000 | 2.607702000  |
| 6 | 2.581825000  | -4.418495000 | 2.644371000  |
| 1 | 2.955777000  | -5.242333000 | 3.246604000  |
| 6 | 1.232851000  | -4.397261000 | 2.222595000  |
| 1 | 0.541140000  | -5.190223000 | 2.483985000  |
| 6 | 0.811205000  | -3.325682000 | 1.430610000  |
| 1 | -0.201496000 | -3.264871000 | 1.048480000  |
| 6 | -1.123464000 | -3.180000000 | -1.785707000 |
| 1 | -0.083722000 | -3.176595000 | -2.104094000 |
| 6 | -1.963273000 | -4.235776000 | -2.136292000 |
| 1 | -1.592287000 | -5.074837000 | -2.717376000 |
| 6 | -3.326591000 | -4.226147000 | -1.752928000 |
| 6 | -3.827859000 | -3.148082000 | -1.022004000 |
| 1 | -4.872879000 | -3.112745000 | -0.724870000 |
| 6 | -2.984025000 | -2.054906000 | -0.654455000 |
| 6 | -3.605716000 | -0.987537000 | 0.112661000  |

| 1 | -4.647921000 | -1.147059000 | 0.399809000  |
|---|--------------|--------------|--------------|
| 6 | -5.106042000 | 1.155168000  | 1.270190000  |
| 6 | -5.796269000 | 1.700020000  | 0.167178000  |
| 1 | -5.229394000 | 2.063598000  | -0.687741000 |
| 6 | -7.201244000 | 1.754326000  | 0.195448000  |
| 1 | -7.740133000 | 2.175229000  | -0.649271000 |
| 6 | -7.908180000 | 1.266926000  | 1.314217000  |
| 1 | -8.994318000 | 1.313146000  | 1.332162000  |
| 6 | -7.210200000 | 0.718147000  | 2.408115000  |
| 1 | -7.755265000 | 0.339731000  | 3.269108000  |
| 6 | -5.803253000 | 0.656946000  | 2.386276000  |
| 1 | -5.248715000 | 0.232580000  | 3.219559000  |
| 6 | -2.861730000 | 2.164350000  | 1.645936000  |
| 6 | -3.370982000 | 3.172787000  | 2.503600000  |
| 1 | -4.407563000 | 3.152034000  | 2.816832000  |
| 6 | -2.507031000 | 4.183737000  | 2.932434000  |
| 1 | -2.879492000 | 4.964529000  | 3.590435000  |
| 6 | -1.156607000 | 4.186781000  | 2.514353000  |
| 1 | -0.462310000 | 4.955515000  | 2.834705000  |
| 6 | -0.736542000 | 3.172188000  | 1.649631000  |
| 1 | 0.276958000  | 3.133656000  | 1.266426000  |
| 6 | 1.670976000  | 2.086491000  | -0.905049000 |
| 6 | -1.604658000 | -2.069928000 | -1.038134000 |
| 6 | -5.495407000 | -5.361911000 | -1.859629000 |
| 1 | -5.676260000 | -5.355755000 | -0.774386000 |
| 1 | -5.870122000 | -6.294531000 | -2.286685000 |
| 1 | -6.013765000 | -4.509567000 | -2.322453000 |
| 6 | 3.881691000  | 6.479186000  | -2.457593000 |
| 1 | 3.554266000  | 6.193945000  | -3.467393000 |

| 1 | 4.758347000  | 7.126961000  | -2.525896000 |
|---|--------------|--------------|--------------|
| 1 | 3.068351000  | 7.013890000  | -1.945933000 |
| 8 | -0.750827000 | -1.061676000 | -0.701879000 |
| 8 | 0.817567000  | 1.055542000  | -0.631408000 |
| 8 | 4.318072000  | 5.319948000  | -1.694764000 |
| 8 | -4.074006000 | -5.341147000 | -2.160187000 |
| 7 | -2.994233000 | 0.120530000  | 0.450107000  |
| 7 | -3.660012000 | 1.094194000  | 1.220812000  |
| 7 | -1.570068000 | 2.189215000  | 1.215674000  |
| 7 | 3.065157000  | -0.189242000 | 0.455378000  |
| 7 | 3.729573000  | -1.213508000 | 1.156284000  |
| 7 | 1.641625000  | -2.311029000 | 1.069505000  |

### Complex 2 (B3LYP/LANL2DZ)

| 30 | -1.370979000 | 0.778408000  | -0.658088000 |
|----|--------------|--------------|--------------|
| 30 | 1.370971000  | -0.777948000 | -0.657965000 |
| 17 | -2.710293000 | 1.802650000  | -2.323824000 |
| 17 | 2.709982000  | -1.801280000 | -2.324470000 |
| 8  | -0.644643000 | -1.147167000 | -0.793678000 |
| 8  | 0.644703000  | 1.147814000  | -0.792337000 |
| 7  | -3.006053000 | -0.233166000 | 0.363830000  |
| 7  | -3.779453000 | 0.664929000  | 1.127503000  |
| 7  | -1.852186000 | 2.024273000  | 1.048188000  |
| 7  | 3.006196000  | 0.233072000  | 0.364065000  |
| 7  | 3.779439000  | -0.665346000 | 1.127460000  |
| 7  | 1.851796000  | -2.024185000 | 1.048068000  |
| 6  | -1.364933000 | -2.262318000 | -1.099687000 |

| 6 | -0.758560000 | -3.316613000 | -1.830936000 |
|---|--------------|--------------|--------------|
| 1 | 0.269482000  | -3.189547000 | -2.162184000 |
| 6 | -1.471240000 | -4.476936000 | -2.146222000 |
| 1 | -0.975676000 | -5.259743000 | -2.718326000 |
| 6 | -2.823837000 | -4.652952000 | -1.750648000 |
| 6 | -3.423130000 | -3.614913000 | -1.030719000 |
| 1 | -4.462753000 | -3.714668000 | -0.718447000 |
| 6 | -2.732168000 | -2.413976000 | -0.693585000 |
| 6 | -3.474916000 | -1.418256000 | 0.061893000  |
| 1 | -4.483180000 | -1.705060000 | 0.370297000  |
| 6 | -3.120220000 | 1.840081000  | 1.509801000  |
| 6 | -3.739965000 | 2.793814000  | 2.357773000  |
| 1 | -4.757539000 | 2.643713000  | 2.696997000  |
| 6 | -3.009133000 | 3.920495000  | 2.742792000  |
| 1 | -3.467895000 | 4.661585000  | 3.392138000  |
| 6 | -1.680259000 | 4.091392000  | 2.291796000  |
| 1 | -1.087741000 | 4.953385000  | 2.577373000  |
| 6 | -1.147631000 | 3.119565000  | 1.440300000  |
| 1 | -0.145907000 | 3.206292000  | 1.034733000  |
| 6 | -5.219860000 | 0.538957000  | 1.207000000  |
| 6 | -5.824310000 | -0.034624000 | 2.340840000  |
| 1 | -5.202932000 | -0.374667000 | 3.165596000  |
| 6 | -7.226432000 | -0.157533000 | 2.390811000  |
| 1 | -7.700667000 | -0.596128000 | 3.265061000  |
| 6 | -8.011122000 | 0.285117000  | 1.307636000  |
| 1 | -9.093393000 | 0.188871000  | 1.347050000  |
| 6 | -7.395809000 | 0.850331000  | 0.171551000  |
| 1 | -8.001291000 | 1.188822000  | -0.665058000 |
| 6 | -5.996625000 | 0.979235000  | 0.115110000  |

| 1 | -5.498513000 | 1.405003000  | -0.753609000 |
|---|--------------|--------------|--------------|
| 6 | 1.365168000  | 2.262745000  | -1.098718000 |
| 6 | 0.758824000  | 3.317243000  | -1.829707000 |
| 1 | -0.269372000 | 3.190513000  | -2.160623000 |
| 6 | 1.471729000  | 4.477356000  | -2.145227000 |
| 1 | 0.976194000  | 5.260333000  | -2.717127000 |
| 6 | 2.824532000  | 4.652977000  | -1.750148000 |
| 6 | 3.423795000  | 3.614753000  | -1.030481000 |
| 1 | 4.463560000  | 3.714187000  | -0.718583000 |
| 6 | 2.732605000  | 2.414001000  | -0.693133000 |
| 6 | 3.475333000  | 1.418036000  | 0.062033000  |
| 1 | 4.483800000  | 1.704507000  | 0.370091000  |
| 6 | 3.119906000  | -1.840353000 | 1.509677000  |
| 6 | 3.739407000  | -2.794327000 | 2.357549000  |
| 1 | 4.757046000  | -2.644568000 | 2.696723000  |
| 6 | 3.008265000  | -3.920820000 | 2.742534000  |
| 1 | 3.466849000  | -4.662076000 | 3.391814000  |
| 6 | 1.679327000  | -4.091319000 | 2.291583000  |
| 1 | 1.086565000  | -4.953146000 | 2.577151000  |
| 6 | 1.146955000  | -3.119310000 | 1.440132000  |
| 1 | 0.145215000  | -3.205777000 | 1.034538000  |
| 6 | 5.219863000  | -0.539659000 | 1.207083000  |
| 6 | 5.996622000  | -0.979646000 | 0.115073000  |
| 1 | 5.498504000  | -1.404995000 | -0.753845000 |
| 6 | 7.395827000  | -0.851000000 | 0.171659000  |
| 1 | 8.001300000  | -1.189262000 | -0.665050000 |
| 6 | 8.011162000  | -0.286342000 | 1.308005000  |
| 1 | 9.093446000  | -0.190302000 | 1.347539000  |
| 6 | 7.226473000  | 0.156030000  | 2.391298000  |

| 1   | 7.700731000              | 0.594207000  | 3.265745000  |
|-----|--------------------------|--------------|--------------|
| 6   | 5.824337000              | 0.033393000  | 2.341181000  |
| 1   | 5.202950000              | 0.373271000  | 3.165998000  |
| 6   | -3.582741000             | -5.916172000 | -2.116054000 |
| 1   | -4.595979000             | -5.910374000 | -1.697323000 |
| 1   | -3.674501000             | -6.024530000 | -3.205733000 |
| 1   | -3.071638000             | -6.814719000 | -1.743627000 |
| 6   | 3.583637000              | 5.915989000  | -2.115859000 |
| 1   | 3.675424000              | 6.024063000  | -3.205565000 |
| 1   | 3.072668000              | 6.814699000  | -1.743653000 |
| 1   | 4.596874000              | 5.910140000  | -1.697123000 |
| Con | nplex <b>3</b> (B3LYP/LA | ANL2DZ)      |              |
| 30  | 1.044483000              | -1.189118000 | -0.685265000 |
| 30  | -1.044237000             | 1.188561000  | -0.684926000 |
| 8   | 0.990309000              | 0.872098000  | -0.861060000 |
| 8   | -0.990246000             | -0.872373000 | -0.860328000 |
| 6   | 2.031668000              | 1.680999000  | -1.176163000 |
| 6   | 4.121012000              | 3.495849000  | -1.904843000 |
| 6   | 4.435735000              | 2.324488000  | -1.129135000 |
| 6   | 1.754649000              | 2.854261000  | -1.956397000 |
| 1   | 0.730006000              | 3.017764000  | -2.280779000 |
| 6   | 2.763036000              | 3.728225000  | -2.300272000 |
| 1   | 2.534490000              | 4.608280000  | -2.897838000 |
| 6   | 5.151144000              | 4.405251000  | -2.286993000 |
| 1   | 4.879629000              | 5.279467000  | -2.875303000 |
| 6   | -3.363083000             | -1.411944000 | -0.742652000 |
| 6   | -4.435782000             | -2.324499000 | -1.129048000 |
| 6   | -4.121022000             | -3.495850000 | -1.904767000 |
| 6   | -2.031682000             | -1.681166000 | -1.175694000 |

| 6 | -2.763022000 | -3.728270000 | -2.300039000 |
|---|--------------|--------------|--------------|
| 1 | -2.534441000 | -4.608272000 | -2.897668000 |
| 6 | -1.754636000 | -2.854372000 | -1.955972000 |
| 1 | -0.729986000 | -3.017906000 | -2.280300000 |
| 6 | -5.812544000 | -2.116970000 | -0.793910000 |
| 1 | -6.122514000 | -1.231252000 | -0.248852000 |
| 6 | -5.151151000 | -4.405197000 | -2.287085000 |
| 1 | -4.879586000 | -5.279409000 | -2.875382000 |
| 6 | -6.474794000 | -4.182521000 | -1.927978000 |
| 1 | -7.255734000 | -4.877603000 | -2.224710000 |
| 7 | -1.021577000 | 2.465177000  | 1.060580000  |
| 7 | -2.848511000 | 0.691258000  | 0.397000000  |
| 7 | -3.247241000 | 1.716920000  | 1.282997000  |
| 6 | -3.680933000 | -0.284490000 | 0.113806000  |
| 1 | -4.677372000 | -0.262329000 | 0.549612000  |
| 6 | -6.800943000 | -3.020298000 | -1.176736000 |
| 1 | -7.836869000 | -2.827615000 | -0.907155000 |
| 6 | -4.643087000 | 1.967815000  | 1.570539000  |
| 6 | -5.219481000 | 1.497234000  | 2.765260000  |
| 1 | -4.605982000 | 0.951248000  | 3.477558000  |
| 6 | 3.363030000  | 1.411864000  | -0.742931000 |
| 6 | -5.416905000 | 2.668267000  | 0.622048000  |
| 1 | -4.949819000 | 3.009841000  | -0.298926000 |
| 6 | -2.246441000 | 2.628760000  | 1.634416000  |
| 6 | 5.812437000  | 2.117017000  | -0.793785000 |
| 1 | 6.122358000  | 1.231306000  | -0.248683000 |
| 6 | 6.474756000  | 4.182625000  | -1.927707000 |
| 1 | 7.255694000  | 4.877770000  | -2.224302000 |
| 6 | 6.800853000  | 3.020409000  | -1.176446000 |

| 1 | 7.836745000  | 2.827759000  | -0.906714000 |
|---|--------------|--------------|--------------|
| 7 | 2.848418000  | -0.691328000 | 0.396800000  |
| 7 | 3.247244000  | -1.716859000 | 1.282979000  |
| 6 | 0.156199000  | -4.334171000 | 2.329640000  |
| 1 | -0.681607000 | -4.976358000 | 2.577005000  |
| 6 | 0.000965000  | -3.294230000 | 1.409763000  |
| 1 | -0.946616000 | -3.110848000 | 0.916142000  |
| 6 | 2.489498000  | -3.676189000 | 2.561510000  |
| 1 | 3.474404000  | -3.807520000 | 2.992213000  |
| 6 | 4.643084000  | -1.967700000 | 1.570559000  |
| 6 | 5.219402000  | -1.497231000 | 2.765374000  |
| 1 | 4.605866000  | -0.951244000 | 3.477637000  |
| 6 | 6.778265000  | -2.905860000 | 0.883123000  |
| 1 | 7.379187000  | -3.446629000 | 0.156856000  |
| 6 | 6.582347000  | -1.741708000 | 3.021770000  |
| 1 | 7.032052000  | -1.383975000 | 3.944390000  |
| 6 | 5.416981000  | -2.668080000 | 0.622079000  |
| 1 | 4.949992000  | -3.009584000 | -0.298968000 |
| 6 | 7.360924000  | -2.445513000 | 2.081902000  |
| 1 | 8.413300000  | -2.632629000 | 2.280504000  |
| 6 | 3.680817000  | 0.284466000  | 0.113562000  |
| 1 | 4.677237000  | 0.262356000  | 0.549419000  |
| 6 | 1.434793000  | -4.526012000 | 2.902005000  |
| 1 | 1.603594000  | -5.333667000 | 3.609460000  |
| 6 | -7.360966000 | 2.445525000  | 2.081696000  |
| 1 | -8.413381000 | 2.632548000  | 2.280172000  |
| 6 | -6.582462000 | 1.741666000  | 3.021570000  |
| 1 | -7.032205000 | 1.383885000  | 3.944154000  |
| 6 | -6.778208000 | 2.906004000  | 0.883003000  |

| 1  | -7.379093000 | 3.446821000  | 0.156742000  |
|----|--------------|--------------|--------------|
| 6  | -0.000954000 | 3.294311000  | 1.409403000  |
| 1  | 0.946623000  | 3.110902000  | 0.915776000  |
| 6  | -0.156172000 | 4.334430000  | 2.329086000  |
| 1  | 0.681661000  | 4.976624000  | 2.576333000  |
| 6  | -2.489449000 | 3.676487000  | 2.561104000  |
| 1  | -3.474341000 | 3.807859000  | 2.991828000  |
| 6  | -1.434743000 | 4.526385000  | 2.901436000  |
| 1  | -1.603554000 | 5.334210000  | 3.608692000  |
| 7  | 1.021597000  | -2.465160000 | 1.060793000  |
| 6  | 2.246471000  | -2.628636000 | 1.634618000  |
| 17 | 1.977270000  | -2.602490000 | -2.325153000 |
| 17 | -1.977550000 | 2.602987000  | -2.323928000 |

#### Complex 4 (B3LYP/LANL2DZ)

| 30 | -1.446720000 | 0.627124000  | -0.732511000 |
|----|--------------|--------------|--------------|
| 30 | 1.446699000  | -0.626882000 | -0.732519000 |
| 17 | -2.888813000 | 1.496177000  | -2.399678000 |
| 17 | 2.888806000  | -1.495564000 | -2.399883000 |
| 8  | -0.519553000 | -1.210920000 | -0.869248000 |
| 8  | 0.519558000  | 1.211246000  | -0.868638000 |
| 7  | -2.966268000 | -0.550331000 | 0.287649000  |
| 7  | -3.832628000 | 0.263437000  | 1.044705000  |
| 7  | -2.055912000 | 1.815970000  | 0.972383000  |
| 7  | 2.966332000  | 0.550272000  | 0.287834000  |
| 7  | 3.832620000  | -0.263689000 | 1.044753000  |
| 7  | 2.055769000  | -1.816059000 | 0.972163000  |

| 6 | -1.114271000 | -2.396041000 | -1.177625000 |
|---|--------------|--------------|--------------|
| 6 | -0.391976000 | -3.376672000 | -1.906472000 |
| 1 | 0.616821000  | -3.136585000 | -2.233929000 |
| 6 | -0.973954000 | -4.609410000 | -2.225164000 |
| 1 | -0.398863000 | -5.336231000 | -2.794283000 |
| 6 | -2.297872000 | -4.910099000 | -1.826069000 |
| 6 | -3.022114000 | -3.953370000 | -1.111680000 |
| 1 | -4.045476000 | -4.167215000 | -0.805237000 |
| 6 | -2.462475000 | -2.688341000 | -0.773745000 |
| 6 | -3.308905000 | -1.775539000 | -0.021072000 |
| 1 | -4.284625000 | -2.165657000 | 0.278661000  |
| 6 | -3.299393000 | 1.500848000  | 1.429623000  |
| 6 | -4.017915000 | 2.384612000  | 2.274929000  |
| 1 | -5.015380000 | 2.129157000  | 2.610730000  |
| 6 | -3.409791000 | 3.581479000  | 2.661915000  |
| 1 | -3.945513000 | 4.270780000  | 3.309318000  |
| 6 | -2.104441000 | 3.889904000  | 2.215345000  |
| 1 | -1.606216000 | 4.809232000  | 2.502029000  |
| 6 | -1.470521000 | 2.978696000  | 1.366230000  |
| 1 | -0.482218000 | 3.169256000  | 0.963423000  |
| 6 | -5.255257000 | -0.002652000 | 1.102920000  |
| 6 | -5.818196000 | -0.632522000 | 2.228077000  |
| 1 | -5.179574000 | -0.911310000 | 3.062576000  |
| 6 | -7.202584000 | -0.890001000 | 2.256734000  |
| 1 | -7.645708000 | -1.372956000 | 3.123891000  |
| 6 | -8.009631000 | -0.524457000 | 1.161291000  |
| 1 | -9.077953000 | -0.725115000 | 1.184246000  |
| 6 | -7.434658000 | 0.098198000  | 0.034085000  |
| 1 | -8.057191000 | 0.376974000  | -0.811964000 |

| 6 | -6.053790000 | 0.361710000  | -0.001277000 |
|---|--------------|--------------|--------------|
| 1 | -5.585147000 | 0.834030000  | -0.862598000 |
| 6 | 1.114370000  | 2.396328000  | -1.176996000 |
| 6 | 0.392108000  | 3.377097000  | -1.905689000 |
| 1 | -0.616738000 | 3.137143000  | -2.233098000 |
| 6 | 0.974176000  | 4.609809000  | -2.224320000 |
| 1 | 0.399106000  | 5.336734000  | -2.793327000 |
| 6 | 2.298153000  | 4.910338000  | -1.825306000 |
| 6 | 3.022365000  | 3.953474000  | -1.111065000 |
| 1 | 4.045772000  | 4.167195000  | -0.804685000 |
| 6 | 2.462639000  | 2.688465000  | -0.773208000 |
| 6 | 3.309042000  | 1.775507000  | -0.020693000 |
| 1 | 4.284793000  | 2.165520000  | 0.279076000  |
| 6 | 3.299279000  | -1.501115000 | 1.429460000  |
| 6 | 4.017725000  | -2.385086000 | 2.274617000  |
| 1 | 5.015211000  | -2.129769000 | 2.610462000  |
| 6 | 3.409503000  | -3.581967000 | 2.661399000  |
| 1 | 3.945169000  | -4.271423000 | 3.308685000  |
| 6 | 2.104129000  | -3.890212000 | 2.214773000  |
| 1 | 1.605829000  | -4.809549000 | 2.501297000  |
| 6 | 1.470288000  | -2.978810000 | 1.365811000  |
| 1 | 0.481972000  | -3.169231000 | 0.962966000  |
| 6 | 5.255258000  | 0.002319000  | 1.103091000  |
| 6 | 6.053824000  | -0.361853000 | -0.001144000 |
| 1 | 5.585200000  | -0.833976000 | -0.862582000 |
| 6 | 7.434703000  | -0.098408000 | 0.034335000  |
| 1 | 8.057262000  | -0.377039000 | -0.811743000 |
| 6 | 8.009651000  | 0.523992000  | 1.161694000  |
| 1 | 9.077980000  | 0.724599000  | 1.184739000  |

- 6 7.202569000 0.889350000 2.257174000
- 1 7.645674000 1.372111000 3.124448000
- 6 5.818172000 0.631939000 2.228400000
- 1 5.179523000 0.910590000 3.062925000
- 1 2.746928000 5.866651000 -2.078685000
- 1 -2.746578000 -5.866429000 -2.079503000