Electronic Supplementary Information

For the Manuscript Entitled

Cobalt complexes of pyrrolecarboxamide ligands as catalysts in nitro reduction reactions: Influence of electronic substituents on catalysis and mechanistic insights

Sunil Yadav, Sushil Kumar and Rajeev Gupta*

Department of Chemistry, University of Delhi, Delhi – 110 007

<u>Index</u>

List of Figures:

Figure S1. FTIR spectrum of complex 1.

Figure S2. FTIR spectrum of complex 2.

Figure S3. UV/Vis spectra of complex 1 (green trace) and 2 (red trace) in measured in MeOH.

Figure S4. Comparative UV/Vis spectra of complex 1 in MeCN (black trace), DMF (blue trace), and MeOH (green trace).

Figure S5. Comparative UV/Vis spectra of complex **2** in MeCN (red trace), DMF (pink trace), and MeOH (brown trace).

Figure S6. UV/Vis spectrum of complex 1 recorded in MeOH (green trace) and after addition of H_2O (red and blue traces).

Figure S7. UV/Vis spectrum of complex **2** recorded in MeOH (pink trace) and after addition of H_2O (green and dark blue traces).

Figure S8. Plots of molar susceptibility (χ_M) and inverse molar susceptibility (χ_M^{-1}) versus temperature for complex 1 (blue circles) and 2 (green circles) measured at 0.5 T.

Figure S9. ¹H NMR spectrum of complex **1** recorded in CD_3CN . * and # respectively represent the residual solvent peak and some unidentified impurity.

Figure. S10. UV-Vis titration of complex 1 with 4-nitrotolene in MeOH. Top Inset: Change in absorbance as a function of moles of 4-nitrotolene. Bottom Inset: Linear regression fitting curve for 1:2 binding between complex 1 and 4-nitrotolene.

Figure. S11. UV-Vis titration of complex 2 with 4-nitrotolene in MeOH. Top Inset: Change in absorbance as a function of moles of 4-nitrotolene. Bottom Inset: Linear regression fitting curve for 1:2 binding between complex 2 and 4-nitrotolene.

Figure. S12. UV-Vis titration of complex **2** with aniline in MeOH. Top Inset: Change in absorbance as a function of moles of aniline. Bottom Inset: Linear regression fitting curve for 1:2 binding between complex **2** and aniline.

Figure S13. UV-Vis spectral titration of complex **2** with hydrazine in MeOH; and change in absorption intensity as a function of moles of hydrazine (inset).

Figure S14. Change in cyclic voltammograms of complex **1** as a function of hydrazine in MeOH.

Figure S15. Change in cyclic voltammograms of complex **2** as a function of hydrazine in MeOH.

Figure S16. Recyclability experiment of complex **2** with respect to hydrazine; original absorption spectrum of complex **2** (trace A) followed by reduction with 0.25 equiv. NH_2NH_2 further followed by oxidation with O_2 (traces B - E). Inset displays subsequent two regenerative cycles.

Figure S17. UV-vis spectra monitored at different time intervals during the reduction of nitrobenzene with hydrazine in MeOH using complex **1** as the catalyst.

Figure S18. ¹H NMR spectrum (recorded in $CDCl_3$) of a reaction mixture during the reduction of nitrobenzene with hydrazine in MeOH using complex **1** as the catalyst.

Figure S19. ¹H NMR spectrum (recorded in $CDCl_3$) of a reaction mixture displaying the formation of *N*-phenylhydroxylamine as one of the products during the reduction of nitrobenzene with hydrazine in MeOH using complex **1** as the catalyst.

Figure S20. Recyclability experiments for the reduction of *para*-CNPhNO₂ with hydrazine in MeOH using complex **1** as a catalyst. In this experiment, a fixed amount of complex **1** (1-mol%) was taken in a reaction flask while fresh batches of *para*-CNPhNO₂ (1 equiv.) and hydrazine (2 equiv.) were added in five consecutive runs.

Figure S21. Recyclability experiments for the reduction of *para*-CNPhNO₂ with hydrazine in MeOH using complex **1** as a catalyst which was isolated at the end of every catalytic cycle (runs 1-5) and reused in the next cycle without any purification.

Figure S22. Comparative FTIR spectra of complex 1 before (green trace) and after (black trace) the catalysis.

Figure S23. Comparative FTIR spectra of complex **2** before (red trace) and after (black trace) the catalysis.

Figure S24. Comparative powder XRD patterns of as synthesized complex 1 (green trace) and the one measured after the catalysis (black trace).

Figure S25. Comparative powder XRD patterns of as synthesized complex **2** (red trace) and the one measured after the catalysis (black trace).

List of Tables:

Table S1. Crystallographic data collection and structure refinement parameters for complex **1**.

Table S2. Selected bond lengths (Å) and bond angles (°) for complex 1.

Figure S1. FTIR spectrum of complex 1.

Figure S2. FTIR spectrum of complex 2.

Figure S3. UV/Vis spectra of complex 1 (green trace) and 2 (red trace) measured in MeOH.

Figure S4. Comparative UV/Vis spectra of complex **1** in MeCN (black trace), DMF (blue trace), and MeOH (green trace).

Figure S5. Comparative UV/Vis spectra of complex **2** in MeCN (red trace), DMF (pink trace), and MeOH (brown trace).

Figure S6. UV/Vis spectrum of complex 1 recorded in MeOH (green trace) and after addition of H_2O (red and blue traces).

Figure S7. UV/Vis spectrum of complex 2 recorded in MeOH (pink trace) and after addition of H₂O (green and dark blue traces).

Figure S8. Plots of molar susceptibility (χ_M) and inverse molar susceptibility (χ_M^{-1}) versus temperature for complex 1 (blue circles) and 2 (green circles) measured at 0.5 T.

Figure S9. ¹H NMR spectrum of complex **1** recorded in CD₃CN. * and # respectively represent the residual solvent peak and some unidentified impurity.

Figure. S10. UV-Vis titration of complex **1** with 4-nitrotolene in MeOH. Top Inset: Change in absorbance as a function of moles of 4-nitrotolene. Bottom Inset: Linear regression fitting curve for 1:2 binding between complex **1** and 4-nitrotolene.

Figure. S11. UV-Vis titration of complex **2** with 4-nitrotolene in MeOH. Top Inset: Change in absorbance as a function of moles of 4-nitrotolene. Bottom Inset: Linear regression fitting curve for 1:2 binding between complex **2** and 4-nitrotolene.

Figure. S12. UV-Vis titration of complex **2** with aniline in MeOH. Top Inset: Change in absorbance as a function of moles of aniline. Bottom Inset: Linear regression fitting curve for 1:2 binding between complex **2** and aniline.

Figure S13. UV-Vis spectral titration of complex **2** with hydrazine in MeOH; and change in absorption intensity as a function of moles of hydrazine (inset).

Figure S14. Change in cyclic voltammograms of complex **1** as a function of hydrazine in MeOH.

Figure S15. Change in cyclic voltammograms of complex **2** as a function of hydrazine in MeOH.

Figure S16. Recyclability experiment of complex **2** with respect to hydrazine; original absorption spectrum of complex **2** (trace A) followed by reduction with 0.25 equiv. NH_2NH_2 further followed by oxidation with O_2 (traces B - E). Inset displays subsequent two regenerative cycles.

Figure S17. UV-vis spectra monitored at different time intervals during the reduction of nitrobenzene with hydrazine in MeOH using complex **1** as the catalyst.

Figure S18. ¹H NMR spectrum (recorded in CDCl₃) of a reaction mixture during the reduction of nitrobenzene with hydrazine in MeOH using complex **1** as the catalyst.

Figure S19. ¹H NMR spectrum (recorded in CDCl₃) of a reaction mixture displaying the formation of *N*-phenylhydroxylamine as one of the products during the reduction of nitrobenzene with hydrazine in MeOH using complex **1** as the catalyst.

Figure S20. Recyclability experiments for the reduction of *para*-CNPhNO₂ with hydrazine in MeOH using complex **1** as a catalyst. In this experiment, a fixed amount of complex **1** (1-mol%) was taken in a reaction flask while fresh batches of *para*-CNPhNO₂ (1 equiv.) and hydrazine (2 equiv.) were added in five consecutive runs.

Figure S21. Recyclability experiments for the reduction of *para*-CNPhNO₂ with hydrazine in MeOH using complex **1** as a catalyst which was isolated at the end of every catalytic cycle (runs 1-5) and reused in the next cycle without any purification.

Figure S22. Comparative FTIR spectra of complex 1 before (green trace) and after (black trace) the catalysis.

Figure S23. Comparative FTIR spectra of complex **2** before (red trace) and after (black trace) the catalysis.

Figure S24. Comparative powder XRD patterns of as synthesized complex 1 (green trace) and the one measured after the catalysis (black trace).

Figure S25. Comparative powder XRD patterns of as synthesized complex 2 (red trace) and the one measured after the catalysis (black trace).

Table S1. Crystallographic data collection and structure refinement parameters for complex **1**.

Empirical formula	C ₂₄ H ₂₈ N ₅ O ₂ Cl ₂ Co
Formula weight	548.34
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	orthorhombic
Space group	$P 2_1 2_1 2_1$
a	12.4118(9) Å
b	13.9055(16) Å
c	13.9670(16) Å
α	90°
β	90°
γ	90°
Volume	2410.6(4) Å ³
Ζ	4
Density (calculated)	1.511 Mg/m ³
Absorption coefficient	0.966 mm ⁻¹
<i>F</i> (000)	1136
Crystal size	0.23 x 0.22 x 0.19 mm ³
Theta range for data collection	3.26 to 25.00°
Index ranges	$-14 \le h \le 14, -14 \le k \le 16, -16 \le l \le 14$
Reflections collected	9844
Independent reflections	4184 [<i>R</i> (int) = 0.0756]
Completeness to theta = 25.00°	98.9 %
Absorption correction	Multi-scan
Max. and min. transmission	0.8377 and 0.8084
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4184 / 0 / 307
Goodness-of-fit on F^2	1.167
Final <i>R</i> indices [I>2sigma(I)] ^{a, b}	$R_1 = 0.0835, wR_2 = 0.2028$
<i>R</i> indices (all data)	$R_1 = 0.0919, wR_2 = 0.2060$
Largest diff. peak and hole	1.540 and -0.848 e.Å ⁻³

^a $R = \sum (\|Fo| - |Fc\|) / \sum |Fo|; {}^{b}wR = \{\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2] \}^{1/2}$