Electronic Supporting Information

Models to Predict the Magnetic Properties of Single- and Multiple-Bridged Phosphate Cu^{II} Systems: A Theoretical DFT Insight.

K. Muñoz-Becerra^a, D. Aravena^{a,b}, E. Ruiz^c, E. Spodine^{b,d}, N. Soto-Donoso^{a,b}, V. Paredes-García^e, D. Venegas-Yazigi^{a,b*}

^a Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile.

^b Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Santiago, Chile.

^c Departament de Química Inorgànica and Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, Spain.

^d Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.

^e Universidad Andres Bello, Departamento de Ciencias Químicas, Santiago, Chile.

Corresponding author: diego.venegas@usach.cl

Table S1. Selected structural parameters Cu-O-P angle (°), Cu-O-Cu angle (°), Cu-O-Cu and D-P-O-Cu dihedral angles (°) related to the REFCODE of each studied compound. The coordination number (CN) of the Cu^{II} ions and type of ligand are also included.

_	REFCODE	CN of Cu ^{II}	Phosphate	Phosphate-	(Cu-O-P)	(Cu-O-O-Cu)	(Cu-O-Cu)	(D-P-O-Cu)
ouno		centers	bridges	coordination				(□)
omp								
0								
1	IKUVUF	5	2 H ₂ PO ₄ -	1,3- H ₂ PO ₄ -	135.1 (1); 135.1 (1)	-41.4(2)		60.32; 121.81
				1,3- H ₂ PO ₄ -	135.1 (1); 135.1 (1)	41.4(2)		
2	LEJLUI1	5	2 H ₂ PO ₄ -	1,3- H ₂ PO ₄ -	131.5 (2); 133.5 (2)	-38.7(4)		59.00; 115.21
				1,3- H ₂ PO ₄ -	133.5 (2); 131.5 (2)	38.7(4)		
3	MADVIX	5	2 H ₂ PO ₄ -	1,3- H ₂ PO ₄ -	130.9 (7); 134.3 (8)	57.1(1)		51.95; 127.12
				1,3- H ₂ PO ₄ -	134.3 (8); 130.9 (7)	-57.1(1)		
4	LEJLUI2	5	2 H ₂ PO ₄ -	1,3- H ₂ PO ₄ -	127.0 (2); 129.2 (2)	5.1(2)		155.28; 161.37
			1 HPO ₄	1,1- HPO4 ²⁻			92.8 (1)	
				1,1- H ₂ PO ₄ -			94.0 (1)	
5	RONBOL	5	2 H ₂ PO ₄ -	1,1- H ₂ PO ₄ -			97.2 (9)	
				1,1- H ₂ PO ₄ -			97.2 (9)	
6	EMEWEY	5	2 HPO ₄ ²⁻	1,1- HPO4 ²⁻			93.0 (1)	
				1,1- HPO ₄ ²⁻			93.0 (1)	
7	PENTUZ	5	HPO ₄ ²⁻	1,3- HPO4 ²⁻	128.9(1)	-112.2(4)		0.67; 109.99
8	PUCHIE	5	PO42-	1,3- PO ₄ ³⁻	135.6(1); 135.6(1)	-89.3(6)		19.64; 219.36
	PUCHIE			1,3- PO ₄ ³⁻	135.6(1); 135.6(1)	-107.7(2)		99.83; 260.17
9	WABSOI	5	PO4 ²⁻	1,3- PO ₄ ³⁻	120.9(2); 129.5(2)	78.1(4)		13.97; 76.19
				1,3- PO ₄ ³⁻	126.9(2); 128.4(2)	-143.8(3)		34.30; 221.44
				1,3- PO ₄ ³⁻	126.9(2); 129.(2)	168.8(2)		46.76; 277.61
				1,3- PO ₄ ³⁻	120.9(2); 128.4(2)	-101.5(5)		14.58; 134.80
				1,3- PO ₄ ³⁻ -other*	120.9(2); 126.9(2)	67.7(2)		162.61; 106.98
				1,3- PO_4^{3} -other*	128.4(2); 129.5(2)	-79.4(1)		156.32; 104.40
10	FIBKAD	6 – 5	2 HPO ₄ ²⁻	1,3- H ₂ PO ₄ -	135.6(1); 130.0(1)	91.6(1)		100.59; 226.91
				1,3- H ₂ PO ₄ -	135.6(1); 84.6(1)	121.6(7)		19.89; 183.92
				1,1- H ₂ PO ₄ -			137.7(1)	
				1,3- H ₂ PO ₄ -	84.6(1); 130.0(1)	-58.8(1)		61.20; 145.90
				1,3- H ₂ PO ₄ -	105.0(1); 130.0(1)	80.5(1)		62.04; 100.59
11	PUJNEN	4 - 5	2 H ₂ PO ₄ -	1,3- H ₂ PO ₄ -	134.3(2); 146.9(3)	-76.4(5)		56.56; 195.22
				Not phosphate ^{\dagger}				
				Not phosphate [§]				

* Pyrazole ; †pyridine-2-aldehyde thiosemicarbazone ; § bis(pyridine-2-aldehyde) thiocarbohydrazone

Figure S1. a) A side view of the $(0^\circ, 0^\circ)$ model (above) and the view through the Cu-O vectors showing their collinearity (below). b) A side view of the $(90^\circ, 270^\circ)$ model (above) and the eclipsed view of the P-O vectors (below). Green: dummy atom; dark blue: nitrogen from the amine ligands; red: oxygen, yellow: phosphorus and white: hydrogen atoms.

Figure S2. Virtual cones produced by the scanning of the dihedral angles D-P-O-Cu by moving both Cu-O vectors. Left: Cu-O bonds forming the virtual cones. The black arrow in the phosphorus atom represents the P-Dummy vector, which is the intersection between the planes O1-P-O2 and O3-P-O4.

