Electronic Supplementary Information

S, N-Containing Co-MOFs Derived Co₉S₈@S,N-Doped Carbon

Materials as Efficient Oxygen Electrocatalysts and Supercapacitor

Electrode Materials

Shengwen Liu,‡^a Mingyu Tong,‡^{a,b} Guoqiang Liu, ^{a,b} Xian Zhang, ^{a,b} Zhaoming Wang, ^a Guozhong Wang, ^a Weiping Cai,^a Haimin Zhang,^{a*} and Huijun Zhao ^{a,c}

^a Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China

^b University of Science and Technology of China, Hefei 230026, China

^c Centre for Clean Environment and Energy, Griffith University, Gold Coast Campus, QLD 4222, Australia

[‡] These authors contributed equally to this work

Table. S1 Summary of the ORR and OER performances for some other Co_9S_8 -based catalysts reported recently.

Sample	OER Current density of 10 mA cm ⁻² at 0.1M KOH	ORR 0.1M KOH		
		potential	n (electron transfer number)	Reference
Co ₉ S ₈ /NSPC9–45	0.31 V	0.79 V (E _{1/2})	3.94 at 0.3 V	1
Co-C@Co ₉ S ₈ DSNCs		0.96 V (onset)	3.9 at 0.1-0.4 V	2
N-Co ₉ S ₈ /G	0.28 V	0.94 V(onset)	3.7 ~3.9 at -0.2-0.8 V	3
Fe ₃ O ₄ @Co ₉ S ₈ /rGO	0.47 V			4
Co ₉ S ₈ @SNCC	0.33 V	0.75 V(E _{1/2}) 0.84 V(onset)	3.99 at 0.2-0.6V	this work

Sample	Capacitance	Electrolyte	Reference
Co ₉ S ₈ /RGO/Ni ₃ S ₂	2611.9 F g ⁻¹ at 3.9 A g ⁻¹	2 M KOH	5
Co ₉ S ₈ @Ni(OH) ₂ core@shell structure	1620 F g ⁻¹ at 0.5 A g ⁻¹	2 M KOH	6
C@Co ₉ S ₈ hollow structures	654 F g ⁻¹ at 2 A g ⁻¹	2 M KOH	7
Co ₉ S ₈ /NF	1645 F g ⁻¹ at 3 A g ⁻¹	2 M KOH	8
Co_9S_8 nanotubes	1775 F g ⁻¹ at 4 A g ⁻¹	2 M KOH	9
Co ₉ S ₈ @SNCC	429 F g ⁻¹ at 1 A g ⁻¹	6M KOH	this work

Table. S2 Summary of the capacitances of some other Co_9S_8 -based composites reported recently.

Fig. S1 SEM image of the Co₉S₈@SNCB

Fig. S2 (a) Koutecky-Levich plots derived from the RDE data of $Co_9S_8@SNCC$, (c) electron transfer number of $Co_9S_8@SNCC$ at 0.2 V~0.6 V.

Fig. S3 (a) LSV curves of Pt/C at various rotation rates; (b) Corresponding Koutecky–Levich plots derived from the RDE data; inset of electron transfer number of Pt/C at $0.2 \text{ V} \sim 0.6 \text{ V}$.

Fig. S4 (a) LSV curves of Co_9S_8 @SNCB at various rotation rates; (b) Corresponding Koutecky–Levich plots derived from the RDE data; inset of electron transfer number of Co_9S_8 @SNCB at 0.2 V~0.6 V.

Fig. S5 XRD pattern of the $Co_9S_8@SNCC$ composite after electrochemical test at 0.1 KOH, 250 cycles for cyclic voltammetry at a scan rate of 50 mV s⁻¹, illustrated that the Co_9S_8 is very stability during this electrochemical test. The $Co_9S_8@SNCC$ was coated on the graphitic carbon paper as an electrode for electrochemical test.

Fig. S6 LSV curves of electrocatalysts of Co_9S_8 SNCC, SNCC for (a) ORR and (b) OER measurements.

Fig. S7 (a) Cyclic voltammogram curves at various scan rates ranging from 5 mV s⁻¹ to 100 mV s⁻¹ and (b) charge-discharge curves measured at different current densities of $Co_9S_8@SNCC$.

Fig. S8 (a) Cyclic voltammogram curves at various scan rates ranging from 5 mV s⁻¹ to 100 mV s⁻¹ and (b) charge-discharge curves measured at different current densities of $Co_9S_8@SNCB$

Fig. S9 Nyquist plots of Co_9S_8 (BNCB and Co_9S_8 (BNCC electrode materials for supercapacitors

References:

- 1 Zhong H.-x.; Li K.; Zhang Q.; Wang J.; Meng F.-l.; Wu Z.-j.; Yan J.-m.; Zhang X.-b., *NPG Asia Mater.* **2016**, *8*, e308.
- 2 Hu H.; Han L.; Yu M.; Wang Z.; Lou X. W., Energy Environ. Sci. 2016, 9, 107-111.
- 3 Dou S.; Tao L.; Huo J.; Wang S.; Dai L., *Energy Environ. Sci* **2016**, *9*, 1320-1326.
- 4 Yang J.; Zhu G.; Liu Y.; Xia J.; Ji Z.; Shen X.; Wu S., *Adv. Funct. Mater.* **2016**, *26*, 4712-4721.
- 5 Zhang Z.; Wang Q.; Zhao C.; Min S.; Qian X., ACS Appl. Mater. Interf. 2015, 7, 4861-4868.
- 6 Wen J.; Li S.; Li B.; Song Z.; Wang H.; Xiong R.; Fang G., *J. Power Sources* **2015**, *284*, 279-286.
- 7 Wu T.; Ma X.; Zhu T., Mater. Lett. 2016, 183, 290-295.
- 8 Li H.; Gao Y.; Shao Y.; Su Y.; Wang X., Nano. Lett **2015**, *15*, 6689-6695.
- 9 Pu J.; Wang Z.; Wu K.; Yu N.; Sheng E., Phys. Chem. Chem. Phys. 2014, 16, 785-791.