Journal Name

Supporting information

Isoselective Mechanism of Ring-opening Polymerization

of rac-lactide Catalyzed by Chiral Potassium Binolates

Yaqin Cui,^[a] Changjuan Chen,^{[a][b]} Yangyang Sun, ^[a] Jincai Wu*, ^[a] Xiaobo Pan^[a]

[a] State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China

[b] Department of Chemistry and Chemical Engineering, Huanghuai University, Zhumadian 463000, People's Republic of China

- 1) Scheme S1
- 2) NMR data for ligand 2, complexes 1 and 2 (Figures S1 S6, Table S1).
- 3) Polymerization data (Figures S7-S15)
- 4) Crystallographic data of complexes 1 and 2

Scheme S1Two possible mechanisms for the ROP of *rac*-lactide catalyzed by complex **1**.

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, **00**, 1-3 | **2**

Please do not adjust margins

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 5

Figure S8 ¹H NMR spectrum of PLA50 prepared by catalyst **2** ([LA]₀/[Cat.]₀/[BnOH]₀ = 50:1:1, Table 2, entry 5).

0.88

Figure S9 ¹³C NMR (100MHz) spectrum of PLA obtained from ROP of *rac*-lactide using catalyst $2([LA]_0/[Cat.]_0/[BnOH]_0 = 100:1:1$, Table 2, entry 6) showing the tetrads in the methine region (a) and the hexads in the carbonyl region (b). The P_m value determined from ¹³C NMR for this sample is 0.79, comparable to the result from the determination by homonuclear decouple ¹H NMR (P_m =0.78). The probablity of formation of a meso linkage (P_m) of PLA can be derived from the methine region of ¹³C NMR spectrum as follows (Bernoullian statistics).¹

(1-	$P_{m})/2=$	=[mrm	1]/([[mrm]+	-[mmm]+	[mmr]+	-[rmm]+[[rmr]	D
-----	-------------	-------	-------	--------	-------	----	--------	-------	-----	-------	---

[mmm]	$P_{m}(P_{m}+1)/2$
[mmr]	$P_{m}(P_{m}-1)/2$
[rmm]	$P_{m} (1 - P_{m})/2$
[rmrm]	$(1 - P_m)^2/2$
[mrm]	$(1-P_m)/2$

Figure S10 Polymerization of *rac*-LA catalyzed by **1** in toluene at room temperature. The relationships between $M_n(\blacksquare)$, $D(\Box)$ of the polymer and the initial mole ratios $[LA]_0/[BnOH]_0$ (Table 1, entries 3-6) is shown.

Figure S11Polymerization of rac-LA catalyzed by 2 in toluene at room temperature. The relationships between $M_n(\blacksquare)$, $D(\Box)$ of the polymer and the initial mole ratios $[LA]_0/[BnOH]_0$ (Table 2, entries 5-9) is shown.

Figure S12 (a)-(e) is the deconvolution of the homonuclear-decoupled ¹H NMR spectrums of PLA (entry 5-9, Table 2). (f) is the deconvolution of the homonuclear-decoupled 1H NMR spectrums of PLA (entry 1, Table 2).

Figure S13 The gel permeation chromatogram of the polymer catalyzed by 1.

Journal Name

Figure S14 The gel permeation chromatogram of the polymer catalyzed by 2.

Figure S15 The MALDI-TOF spectrum of PLA50 prepared by catalyst **2** ([LA]₀/[Cat.]₀/[BnOH]₀ = 50:1:1, Table 2, entry 5). Mass (\bullet) = 72m + 108(PhCH₂OH) + 18 (H₂O) + 23 (Na⁺); Mass (\bullet) = 72m + 108(PhCH₂OH) + 39(K⁺).

Journal Name ARTICLE

Compound	1	2		
Formula	C ₃₂ H ₃₇ KO ₈	$C_{66}{\rm H}_{78}{\rm K}_2{\rm O}_{16}$		
Fw	588.72	1205.48		
Temp	173.00(10)	296(2)		
Crystal system	Monoclinic	triclinic		
Space group	$I_{2/a}$	P ₁		
aÅ	8.1133(4)	10.9339(11)		
bÅ	18.7948(10)	11.3695(12)		
cÅ	19.0856(10)	14.208(2)		
α°	90.00	107.602(2)		
β°	98.877(5)	96.818(2)		
γ□°	90.00	109.876(2)		
V Å ³	2875.4(3)	1534.1(3)		
Z	4	1		
Density(calcd) g·cm ⁻³	1.360	1.305		
Absorb.coeff. mm ⁻¹	0.237	0.223		
F(000)	1248	640		
θ range	4.1–28.3°	3.5–26.8°		
	-10 <h<10< td=""><td>-13<h<13< td=""></h<13<></td></h<10<>	-13 <h<13< td=""></h<13<>		
Index ranges	-18 <k<25< td=""><td>-13<k<13< td=""></k<13<></td></k<25<>	-13 <k<13< td=""></k<13<>		
	-24<1<23	-11< <i>l</i> <17		
Data/restr./param	4980/45/373	7016/3/759		
GOF	1.048	1.035		
$[\mathbf{h} 2_{\mathbf{r}}(\mathbf{h})]$	$R_1 = 0.0491$	$R_1 = 0.0492$		
$[1 \sim 20(1)]$	w <i>R</i> ₂ =0.1171	w <i>R</i> ₂ =0.1447		

Table S1Crystallographic data of complexes 1 and 2