Electronic Supplementary Information

$Ba_{n+2}Zn_n(BO_3)_n(B_2O_5)F_n(n = 1,2)$: New Members of the Zincoborate Fluoride Series with Two Kinds of Isolated B-O Units

Miriding Mutailipu,^{a,b} Xin Su^{a,b}, Min Zhang,^{*a} Zhihua Yang^a and Shilie Pan^{*a}

^aKey Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences; Xinjiang Key Laboratory of Electronic Information

Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China

^bUniversity of the Chinese Academy of Sciences, Beijing 100049, China

*Corresponding authors, E-mails: zhangmin@ms.xjb.ac.cn; slpan@ms.xjb.ac.cn

Table S1. Atomic coordinates equivalent isotropic displacement parameters and bond valence Sum (BVS) for $Ba_3Zn(BO_3)(B_2O_5)F$. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atoms	x	у	Z	$U_{eq}(Å^2)$	BVS
Ba(1)	0.4278(1)	0.8607(1)	0.1530(1)	0.016(1)	2.084
Ba(2)	0.7178(1)	0.8688(1)	0.2030(1)	0.015(1)	2.109
Ba(3)	0.1328(1)	0.8331(1)	0.0756(1)	0.016(1)	1.879
Zn(1)	0.8965(1)	0.8950(1)	0.5396(1)	0.015(1)	2.108
B(1)	0.5816(6)	0.8866(11)	0.4573(9)	0.016(2)	2.909
B(2)	0.9610(6)	0.9012(10)	0.2500(9)	0.014(2)	2.889
B(3)	0.7120(6)	1.0764(11)	0.5934(9)	0.017(2)	3.023
O(1)	0.9448(3)	0.6471(6)	0.5918(5)	0.017(1)	-1.938
O(2)	0.5763(3)	0.9799(7)	0.3209(5)	0.021(1)	-2.185
O(3)	0.9499(3)	1.1014(7)	0.6743(5)	0.019(1)	-1.955
O(4)	0.8928(3)	0.9556(7)	0.3209(5)	0.018(1)	-2.069
O(5)	0.3716(3)	1.0131(7)	0.4065(5)	0.020(1)	-2.157
O(6)	0.5509(4)	0.7902(7)	-0.0212(6)	0.025(1)	-1.935
O(7)	0.7718(4)	0.9675(8)	0.5342(6)	0.027(1)	-1.959
O(8)	0.7262(4)	1.2487(7)	0.1533(6)	0.030(1)	-1.799
F(1)	0.2634(3)	1.0698(6)	0.0956(4)	0.024(1)	-1.297

Table S2. Atomic coordinates equivalent isotropic displacement parameters and bond valence Sum (BVS) for $Ba_4Zn_2(BO_3)_2(B_2O_5)F_2$. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atoms	x	У	Z	$U_{eq}(Å^2)$	BVS
Ba(1)	0.3410(1)	0.2214(1)	0.0735(1)	0.010(1)	2.017
Ba(2)	0.4535(1)	0.2459(1)	0.3848(1)	0.011(1)	2.070
Zn(1)	0.1994(1)	0.1857(1)	0.2200(1)	0.010(1)	2.003
B(1)	0.2086(2)	0.7000(8)	0.1009(3)	0.010(1)	2.917
B(2)	0.0627(2)	0.2445(8)	0.2728(4)	0.011(1)	2.906
O(1)	0.3358(1)	0.3033(6)	0.4676(2)	0.015(1)	-1.843
O(2)	0.4333(1)	-0.0001(5)	0.1983(2)	0.016(1)	-1.951
O(3)	0.1145(1)	0.0717(5)	0.2605(2)	0.014(1)	-1.963
O(4)	0.2549(1)	0.3628(5)	0.3292(2)	0.012(1)	-1.980
O(5)	0.5000	0.6182(8)	0.2500	0.013(1)	-2.191
O(6)	0.2182(1)	0.4252(5)	0.1073(2)	0.013(1)	-2.069
F(1)	0.4506(1)	0.2526(4)	-0.0285(2)	0.018(1)	-1.010

Ba(1)-O(2)	2.603(5)	Ba(3)-O(3)#4	2.750(5)
Ba(1)-O(6)	2.659(5)	Ba(3)-O(1)#6	2.787(5)
Ba(1)-O(2)#1	2.680(5)	Ba(3)-O(3)#1	2.835(5)
Ba(1)-O(5)	2.734(5)	Ba(3)-O(4) ^{#1}	2.845(5)
Ba(1)-O(6)#2	2.748(5)	Ba(3)-O(1)#7	2.885(5)
Ba(1)-F(1)	2.861(5)	Ba(3)-O(8) ^{#1}	2.964(6)
Ba(1)-O(8)#1	3.219(6)	Ba(3)-O(7) ^{#1}	3.174(6)
Ba(1)-O(6)#3	3.299(5)	Ba(3)-O(8) ^{#2}	3.232(6)
Ba(1)-O(8)#2	3.323(6)	Zn(1)-O(1)	1.909(5)
Ba(2)-O(2)	2.659(5)	Zn(1)-O(3)	1.951(5)
Ba(2)-O(8)	2.704(5)	Zn(1)-O(7)	1.953(5)
Ba(2)-F(1)#2	2.716(4)	Zn(1)-O(4)	1.954(5)
Ba(2)-F(1)#1	2.722(4)	B(1)-O(6)#3	1.348(9)
Ba(2)-O(4)	2.743(5)	B(1)-O(2)	1.352(9)
Ba(2)-O(5)#1	2.918(5)	B(1)-O(5)#4	1.457(9)
Ba(2)-O(7)	2.956(5)	B(2)-O(4)	1.352(10)
Ba(2)-O(6)	2.972(6)	B(2)-O(3)#10	1.397(9)
Ba(2)-O(7)#4	2.973(6)	B(2)-O(1)#5	1.406(9)
Ba(3)-F(1)	2.566(4)	B(3)-O(8) ^{#12}	1.336(9)

Table S3. Selected bond lengths (Å) for $Ba_3Zn(BO_3)(B_2O_5)F$.

Symmetry transformations used to generate equivalent atom				
#1	-x+1,y-1/2,-z+1/2			
#2	-x+1,-y+2,-z			
#3	x,-y+3/2,z+1/2			
#4	-x+1,-y+2,-z+1			

	< ,		
Ba(1)-F(1)	2.659(3)	Ba(2)-O(5)	2.760(3)
Ba(1)-O(2)	2.674(3)	Ba(2)-O(3)#3	2.817(3)
Ba(1)-O(6)#1	2.705(3)	Ba(2)-O(2)#6	2.873(3)
Ba(1)-O(1)#2	2.749(3)	Zn(1)-O(3)	1.920(3)
Ba(1)-O(6)	2.757(3)	Zn(1)-O(6)	1.949(3)
Ba(1)-O(3)#3	2.901(3)	Zn(1)-O(4) ^{#5}	1.986(3)
Ba(1)-O(1)#4	2.965(3)	Zn(1)-O(4)	1.989(3)
Ba(1)-O(4)#5	2.979(3)	B(1)-O(1)#3	1.346(5)
Ba(2)-F(1)#6	2.650(3)	B(1)-O(6)	1.390(5)
Ba(2)-O(1)	2.693(3)	B(1)-O(4)#3	1.411(5)
Ba(2)-F(1)#7	2.739(3)	B(2)-O(2)#3	1.332(5)
Ba(2)-O(2)	2.744(3)	B(2)-O(3)	1.379(5)
Ba(2)-F(1)#8	2.753(3)	B(2)-O(5)#9	1.445(5)

Table S4. Selected bond lengths (Å) for $Ba_4Zn_2(BO_3)_2(B_2O_5)F_2$.

Symmetry transformations used to generate equivalent atom

#1	-x+1/2,-y+1/2,-z
#2	x,-y+1,z-1/2
#3	-x+1/2,y+1/2,-z+1/2
#4	x,-y,z-1/2
#5	-x+1/2,y+1/2,-z+1/2
#6	-x+1,y,-z+1/2
#7	x,-y,z+1/2
#8	x,-y+1,z+1/2

-

Empirical Formula	V (Å ³)	n	M/B	Number density (× 10 ⁻³)
$D_0 (D_0) (D_0) F$	917.4	$n(BO_3)=6$	1 2 2	$d(BO_3) = 6.54$
		$n(B_2O_5)=4$	1.55	$d(B_2O_5) = 4.36$
$\mathbf{D}_{\mathbf{a}} \mathbf{T}_{\mathbf{a}} (\mathbf{D}_{\mathbf{a}}) (\mathbf{D}_{\mathbf{a}}) \mathbf{E}$	1220.7	$n(BO_3)=6$	1.5	d(BO ₃)= 4.51
$Ba_4Zn_2(BO_3)_2(B_2O_5)F_2$	1330.7	$n(B_2O_5) = 4$		$d(B_2O_5) = 3.01$
Ba ₃ Zn ₂ (BO ₃) ₃ F	738.19	n(BO ₃)= 12	1.67	d(BO ₃)= 16.25
Ba ₅ Zn ₂ (BO ₃) ₄ F ₂	1090.68	n(BO ₃)=16	1.75	d(BO ₃)= 14.67
BaZnBO ₃ F	95.11	$n(BO_3) = 1$	2	d(BO ₃)= 10.51

Table S5. The basic information of the existing fluorine-containing zincoborates

No.	Chemical formula	A/B	B-O cluster
1	Zn ₅ Mn(BO ₃) ₂ O ₄	3	isolated BO ₃
2	KZn ₂ (BO ₃)Cl ₂	3	isolated BO ₃
3	BaZn(BO ₃)F	2	isolated BO ₃
4	CdZn ₂ KB ₂ O ₆ F	2	isolated BO ₃
5	α-LiZnBO ₃	2	isoalted BO ₃
6	β-LiZnBO ₃	2	isolated BO ₃
7	$Ba_5Zn_2B_4O_{12}F_2$	1.75	isolated BO ₃
8	CsZn ₄ (BO ₃) ₃	1.67	isolated BO ₃
9	KZn ₄ B ₃ O ₉	1.67	isolated BO ₃
10	KZn ₄ (BO ₃) ₃	1.67	isolated BO ₃
11	Ba ₃ Zn ₂ B ₃ O ₉ F	1.67	isolated BO ₃
12	α -Zn ₃ (BO ₃) ₂	1.5	isolated BO ₃
13	β -Zn ₃ (BO ₃) ₂	1.5	isolated BO ₃
14	BaZn ₂ (BO ₃) ₂	1.5	isolated BO ₃
15	PbZn ₂ (BO ₃) ₂	1.5	isolated BO ₃
16	$Cd_3Zn_3(BO_3)_4$	1.5	isolated BO ₃
17	$Bi_2(ZnB_2O_7)$	1.5	isolated B ₂ O ₅ and B ₂ O ₇
18	$Ba_4Zn_2(BO_3)_2(B_2O_5)F_2$	1.5	isolated BO3 and B2O5
19	Ba ₃ Zn(BO ₃)(B ₂ O ₅)F	1.33	isolated BO3 and B2O5
20	CsZn ₂ B ₃ O ₇	1	isolated B ₃ O ₆ and BO ₃
21	$Cs_3Zn_6(B_9O_{21})$	1	isolated B ₃ O ₆ and BO ₃
22	$Zn_8Se_2(BO_2)_{12}$	0.83	3D network
23	$K_2Na(ZnB_5O_{10})$	0.8	isolated B ₅ O ₁₀
24	K ₃ ZnB ₅ O ₁₀	0.8	isolated B ₅ O ₁₀
25	α -Na ₃ Zn(B ₅ O ₁₀)	0.8	isolated B ₅ O ₁₀
26	β -Na ₃ Zn(B ₅ O ₁₀)	0.8	isolated B ₅ O ₁₀
27	Rb ₃ Zn(B ₅ O ₁₀)	0.8	isolated B ₅ O ₁₀
28	ZnV ₁₂ B ₁₈ O ₆₃	0.72	isolated B ₁₈ O ₄₂
29	$\alpha\text{-Pb}_2Ba_4Zn_4B_{14}O_{31}$	0.71	isolated B ₂ O ₅ and B ₆ O ₁₃
30	β -Pb ₂ Ba ₄ Zn ₄ B ₁₄ O ₃₁	0.71	isolated B ₂ O ₅ and B ₆ O ₁₃
31	$\gamma\text{-}Pb_2Ba_4Zn_4B_{14}O_{31}$	0.71	isolated B ₂ O ₅ and B ₆ O ₁₃
32	$Zn_4(B_6O_{12})O$	0.67	3D network
33	KBa ₂ Zn ₃ B ₉ O ₁₉	0.67	isolated B ₃ O ₆ and B ₆ O ₁₃
34	KZnB ₃ O ₆	0.67	isolated B ₆ O ₁₂
35	$Ba_4K_2Zn_5(B_3O_6)_3(B_9O_{19})$	0.61	isolated B ₃ O ₆ and B ₉ O ₁₉
36	$Pb_4Zn_2B_{10}O_{21}$	0.6	B ₅ O ₈ O _{5/2} layer
37	$Ba_4Na_2Zn_4(B_3O_6)_2(B_{12}O_{24})$	0.55	isolated B ₃ O ₆ and B ₁₂ O ₂₄
38	$NdZn(B_5O_{10})$	0.5	isolated B ₅ O ₁₀
39	$Ba_2Zn(B_3O_6)_2$	0.5	isolated B ₃ O ₆

Table S6. The basic information of the existing anhydrous-zincoborates

40	$Na_2Zn(B_6O_{11})$	0.5	B ₃ O ₄ O _{3/2} layer
41	$Zn_3(B_7O_{13})Br$	0.43	3D network
42	Zn ₃ (B ₇ O ₁₃)Cl	0.43	3D network
43	$CeZn(B_5O_{10})$	0.4	isolated B ₅ O ₁₁
44	EuZn(BO ₂) ₅	0.4	B ₅ O ₁₀ layer
45	$LaZn(B_5O_{10})$	0.4	B ₅ O ₁₀ layer
46	$TbZn(B_5O_{10})$	0.4	isolated B ₅ O ₁₀
47	α -Zn(B ₄ O ₇)	0.25	3D network
48	β -Zn(B ₄ O ₇)	0.25	3D network

Bond type	Exp.	Cal.	BOP
Ba(1)-O(2)	2.603(5)	2.659(8)	-0.25
Ba(1)-O(6)	2.659(5)	2.659(5)	-0.25
Ba(1)-O(2) ^{#1}	2.680(5)	2.679(9)	-0.25
Ba(1)-O(5)	2.734(5)	2.737(1)	-0.15
Ba(1)-O(6)#2	2.748(5)	2.748(5)	-0.15
Ba(1)-F(1)	2.861(5)	2.861(5)	-0.17
Ba(1)-O(8) ^{#1}	3.219(6)	3.221(3)	-0.13
Ba(1)-O(6)#3	3.299(5)	3.299(5)	-0.13
Ba(1)-O(8) ^{#2}	3.323(6)	3.325(1)	-0.13
Ba(2)-O(2)	2.659(5)	2.657(8)	-0.25
Ba(2)-O(8)	2.704(5)	2.706(2)	-0.15
Ba(2)-F(1)#2	2.716(4)	2.716(4)	-0.32
Ba(2)-F(1)#1	2.722(4)	2.722(4)	-0.25
Ba(2)-O(4)	2.743(5)	2.742(9)	-0.15
Ba(2)-O(5) ^{#1}	2.918(5)	2.919(6)	-0.14
Ba(2)-O(7)	2.956(5)	2.959(4)	-0.14
Ba(2)-O(6)	2.972(6)	2.972(6)	-0.14
Ba(2)-O(7)#4	2.973(6)	2.974(1)	-0.14
Ba(3)-F(1)	2.566(4)	2.566(4)	-0.68
Ba(3)-O(3)#4	2.750(5)	2.750(5)	-0.15
Ba(3)-O(1)#6	2.787(5)	2.779(9)	-0.15
Ba(3)-O(3) ^{#1}	2.835(5)	2.835(5)	-0.14
Ba(3)-O(4) ^{#1}	2.845(5)	2.839(6)	-0.14
Ba(3)-O(1)#7	2.885(5)	2.890(9)	-0.14
Ba(3)-O(8) ^{#1}	2.964(6)	2.964(6)	-0.14
Ba(3)-O(7) ^{#1}	3.174(6)	3.179(3)	-0.13
Ba(3)-O(8) ^{#2}	3.232(6)	3.232(6)	-0.13
Zn(1)-O(1)	1.909(5)	1.909(5)	0.23
Zn(1)-O(3)	1.951(5)	1.951(5)	0.23
Zn(1)-O(7)	1.953(5)	1.953(5)	0.25
Zn(1)-O(4)	1.954(5)	1.954(5)	0.25

Table S7. The calculated bond lengths (Å) in comparison with experimental data,Mulliken bond overlap populations (BOP) for $Ba_3Zn(BO_3)(B_2O_5)F$.

B(1)-O(6) ^{#3}	1.348(9)	1.348(9)	0.92
B(1)-O(2)	1.352(9)	1.353(7)	0.92
B(1)-O(5)#4	1.457(9)	1.459(2)	0.74
B(2)-O(4)	1.352(10)	1.350(9)	0.86
B(2)-O(3)#10	1.397(9)	1.397(9)	0.86
B(2)-O(1)#5	1.406(9)	1.410(7)	0.79
B(3)-O(8) ^{#12}	1.336(9)	1.336(9)	0.92

Bond type	Exp.	Cal.	BOP
Ba(1)-F(1)	2.659(3)	2.659(3)	-0.49
Ba(1)-O(2)	2.674(3)	2.675(7)	-0.41
Ba(1)-O(6) ^{#1}	2.705(3)	2.705(3)	-0.27
Ba(1)-O(1)#2	2.749(3)	2.750(4)	-0.27
Ba(1)-O(6)	2.757(3)	2.757(3)	-0.27
Ba(1)-O(3)#3	2.901(3)	2.898(9)	-0.21
Ba(1)-O(1)#4	2.965(3)	2.964(5)	-0.21
Ba(1)-O(4)#5	2.979(3)	2.980(2)	-0.21
Ba(2)-F(1)#6	2.650(3)	2.650(3)	-0.49
Ba(2)-O(1)	2.693(3)	2.695(0)	-0.41
Ba(2)-F(1)#7	2.739(3)	2.739(3)	-0.54
Ba(2)-O(2)	2.744(3)	2.742(9)	-0.27
Ba(2)-F(1)#8	2.753(3)	2.753(3)	-0.54
Ba(2)-O(5)	2.760(3)	2.759(6)	-0.27
Ba(2)-O(3)#3	2.817(3)	2.812(9)	-0.21
Ba(2)-O(2) ^{#6}	2.873(3)	2.875(1)	-0.21
Zn(1)-O(3)	1.920(3)	1.920(3)	0.27
Zn(1)-O(6)	1.949(3)	1.949(3)	0.27
Zn(1)-O(4) ^{#5}	1.986(3)	1.986(3)	0.14
Zn(1)-O(4)	1.989(3)	1.989(3)	0.14
B(1)-O(1)#3	1.346(5)	1.345(6)	0.90
B(1)-O(6)	1.390(5)	1.389(3)	0.90
B(1)-O(4) ^{#3}	1.411(5)	1.409(9)	0.77
B(2)-O(2)#3	1.332(5)	1.334(3)	0.92
B(2)-O(3)	1.379(5)	1.380(1)	0.92
B(2)-O(5) ^{#9}	1.445(5)	1.446(3)	0.77

Table S8. The calculated bond lengths (Å) in comparison with experimental data, Mulliken bond overlap populations (BOP) for $Ba_4Zn_2(BO_3)_2(B_2O_5)F_2$.

Fig. S1. Coordination of the Ba atoms in $Ba_3Zn(BO_3)(B_2O_5)F$ (a, b and c) and $Ba_4Zn_2(BO_3)_2(B_2O_5)F_2$ (d and e).

Fig. S2. The B-O groups in $Ba_3Zn(BO_3)(B_2O_5)F$ (a) and $Ba_4Zn_2(BO_3)_2(B_2O_5)F_2$ (b).

Fig. S3. The angles between two planes built up by two single $[BO_3]^{3-}$ units $Ba_3Zn(BO_3)(B_2O_5)F(a)$ and $Ba_4Zn_2(BO_3)_2(B_2O_5)F_2(b)$.

Fig. S4. Coordination of the Zn atoms in $Ba_3Zn(BO_3)(B_2O_5)F$ (a) and $Ba_4Zn_2(BO_3)_2(B_2O_5)F_2$ (b), $Ba_3Zn_2(BO_3)_3F$ (c), $Ba_5Zn_2(BO_3)_4F_2(d)$, and $BaZnBO_3F$ (e), respectively.

