Synthesis, crystal and electronic structure, and physical properties of a

new quaternary phosphide Ba₄Mg_{2+ δ}Cu_{12- δ}P₁₀ (0 < δ < 2)

Jian Wang, Joseph Mazzetti, Kirill Kovnir*

Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA

95616, USA

Supporting information

- 1. **Figure S1.** Calculated and experimental powder X-ray diffraction patterns for Ba4Mg2.8Cu_{11.2}P₁₀.
- 2. **Figure S2.** Calculated and experimental powder X-ray diffraction patterns for Ba₄Mg_{2+ δ}Cu_{12- δ}P₁₀ (δ = 0, 0.8, 1.0, 1.5, 2.0, 2.5) samples.
- 3. **Figure S3.** An enlarged view of the fragments of powder X-ray diffraction patterns for $Ba_4Mg_{2+\delta}Cu_{12-\delta}P_{10}$ around $2\theta = 34.5^{\circ}$.
- 4. **Figure S4.** The unit cell volume *vs.* nominal composition plot for $Ba_4Mg_{2+\delta}Cu_{12-\delta}P_{10}$.
- 5. **Table S1.** EDS results of $Ba_4Mg_{2+\delta}Cu_{12-\delta}P_{10}$.
- 6. **Figure S5.** SEM image of the $Ba_4Mg_{2.8}Cu_{11.2}P_{10}$ crystal.

Figure S1. Calculated and experimental powder X-ray diffraction patterns for Ba₄Mg_{2.8}Cu_{11.2}P₁₀.

Figure S2. Calculated and experimental powder X-ray diffraction patterns for Ba₄Mg_{2+ δ}Cu_{12- δ} P₁₀ (δ = 0, 0.8, 1.0, 1.5, 2.0, 2.5) samples. Red squares indicate the main admixture peak.

Figure S3. An enlarged view of the fragments of calculated and experimental powder X-ray diffraction patterns for Ba₄Mg_{2+ δ}Cu_{12- δ}P₁₀ (δ = 0, 0.8, 1.0, 1.5, 2.0, 2.5) around 2 θ = 34.5°.

Figure S4. The unit cell volume *vs.* nominal composition plot for $Ba_4Mg_{2+\delta}Cu_{12-\delta}P_{10}$. The powder X-ray diffraction data collected at room temperature are shown as orange diamonds. A volume of the single crystal studied at 90 K is shown as blue star.

Table S1. Results of EDS analyses of selected single crystals of $Ba_4Mg_{2+\delta}Cu_{12-\delta}P_{10}$.

Figure S5. An SEM image of the Ba4Mg2.8Cu11.2P10 crystal.