Supporting Information

Complementation and Joint Contribution of Appropriate Intramolecular Coupling and Local Ion Symmetry to Improve Magnetic Relaxation in Series of Dinuclear Dy2 Single-Molecule Magnets

Hao-Ran Tu,[†] Wen-Bin Sun,^{*†} Hong-Feng Li,[†] Peng Chen,[†] Yong-Mei Tian,^{*†} Wan-Ying Zhang,[†] Yi-Quan Zhang,^{*‡} and Peng-Fei Yan[†]

[†]Department Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, Heilongjiang University, Harbin 150080, China.

[‡]Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology,

Nanjing Normal University, Nanjing 210023, China.

E-mail: wenbinsun@126.com; zhangyiquan@njnu.edu.cn

	1	2	3	3 Y
formula	$C_{72}H_{50}Dy_2F_{12}O_{14}$	$C_{56}H_{42}Dy_2F_{12}O_{14}$	$C_{48}H_{38}Dy_2F_{12}O_{14}S_4$	$C_{48}H_{38}Y_2F_{12}O_{14}S_4$
FW (g.mol ⁻¹)	1692.12	1491.90	1520.02	1372.84
Crystal system	monoclinic	triclinic	triclinic	triclinic
Space group	C1	P-1	P-1	P-1
Temperature (K)	293(2)	293(2) K	293(2) K	293(2)
a (Å)	26.2297(6)	9.7688(6)	10.9116(4)	10.9144(7)
b (Å)	14.2596(3)	12.7894(8)	11.0698(5)	11.0520(9)
c (Å)	18.5801(5)	13.0685(8)	13.0230(5)	13.0251(12)
α (°)	90	113.112(6)	71.207(4)	71.071(8)
β (°)	105.255(3)	105.241(5)	76.793(3)	76.611(7)
γ (°)	90	99.434(5)	67.239(4)	67.152(7)
V (Å ³)	6704.6(3)	1381.69(14)	1363.46(9)	1359.50(19)
pcacd (Mg.m ⁻³)	1.676	1.793	1.851	1.677
μ (mm ⁻¹)	2.311	2.790	2.976	2.382
F (000)	3336	730	742	688
Collected reflections	17704	11173	10673	10797
Independent relections	8606	6347	6167	6189
Rint	0.0248	0.0676	0.0307	0.0320
R1 [I > $2\sigma(I)$]	0.0869	0.0699	0.0504	0.0946
wR ² (all data)	0.1672	0.1627	0.1182	0.1913
GOF	1.059	1.088	1.095	1.035

 Table S1. Crystallographic parameters of all complexes.

1a	4	4a	5	6
$C_{74}H_{62}Dy_2F_{12}O_{18}$	$C_{72}H_{50}F_{12}O_{14}Tb_2$	$C_{74}H_{58}F_{12}O_{18}Tb_2$	$C_{72}H_{50}Er_2F_{12}O_{14}$	$C_{74}H_{58}F_{12}Gd_2O_{18}$
1792.24	1684.96	1781.04	1701.64	1777.70
Triclinic	Monoclinic	Triclinic	Monoclinic	Triclinic
P 1	C2/c	P-1	C2/c	P-1
293(2)	293(2)	293(2)	293(2)	293(2)
10.4693(5)	26.2874(7)	10.4870(5)	26.1533(5)	10.5094(9)
14.2053(8)	14.2711(4)	14.2174(7)	14.2224(3)	14.2002(10)
14.5234(7)	18.5381(6)	14.5235(7)	18.6514(5)	14.5239(11)
105.513(5)	90.00	65.286(4)	90.00	65.464(7)
101.950(4)	105.300(3)	78.174(4)	105.158(2)	78.393(7)
111.582(5)	90.00	68.383(4)	90.00	68.374(7)
1819.40(16)	6708.1(3)	1825.41(15)	6696.3(3)	1830.0(2)
1.636	1.668	1.620	1.688	1.613
890	3328.0	884.0	3352.0	882.0
15001	26117	13362	17264	15821
8220	7929	7443	8364	9161
0.0579	0.0717	0.0447	0.0708	0.0525
0.1325	0.1207	0.1130	0.1054	0.1237
1.079	1.052	1.115	0.973	1.051
	7			
formula	$C_{48}H_{38}F_{12}Gd_2O_{14}S_4$	4		
FW (g.mol ⁻¹)	1509.58			
Crystal system	triclinic			
Space group	P-1			
Temperature (K)	293			
a (Å)	10.9212(6)			

b (Å)	11.0906(6)
c (Å)	13.0365(5)
α (°)	71.247(4)
β (°)	76.901(4)
γ (°)	67.048(5)
V (Å ³)	1367.49(13)
pcacd (Mg.m ⁻³)	1.8329
μ (mm ⁻¹)	2.653
F (000)	739.2
Collected reflections	11433
Independent relections	6742
Rint	0.0375
R1 [I > $2\sigma(I)$]	0.0491
wR ² (all data)	0.1391
GOF	1.067

Table S2. Selected bond lengths (Å) and Angles (°) for ${\bf 1}$

Dy1-O3	2.283(3)	Dy1-O5	2.300(4)
Dy1-O3'	2.301(3)	Dy1-O6	2.301(4)
Dy1-O4	2.317(4)	Dy1-O7	2.329(4)
Dy1-O2	2.602(4)	Dy1-O1	2.624(4)

O3-Dy(1)-O5	142.73(14)	O3-Dy1-O3'	66.59(14)
O5-Dy1-O3'	138.26(14)	O3-Dy1-O6	88.70(15)
O5-Dy1-O6	87.13(16)	O3'-Dy1-O6	130.42(15)
O3-Dy1-O4	83.58(14)	O5-Dy1-O4	74.46(14)
O3'-Dy1-O4	84.78(13)	O6-Dy1-O4	136.55(15)
O3-Dy1-O7	117.20(15)	O5-Dy1-O7	96.33(15)
O3'-Dy1-O7	82.59(14)	O6-Dy1-O7	71.28(15)
O4-Dy1-O7	148.24(15)	O3-Dy1-O2	129.66(12)
O5-Dy1-O2	76.37(14)	O3'-Dy1-O2	64.60(12)
O6-Dy1-O2	133.30(15)	O4-Dy1-O2	80.58(14)
O7-Dy1-O2	67.67(14)	O3-Dy1-O1	65.20(12)
O5-Dy1-O1	79.38(14)	O3'-Dy1-O1	128.12(12)
O6-Dy1-O1	65.97(15)	O4-Dy1-O1	72.04(14)

Table S3. Selected bond lengths (Å) and Angles (°) for 1a

_

Dy1-O3	2.678(4)	Dy1-O7	2.350(4)
Dy1-O4	2.325(4)	Dy1-O6	2.415(5)

_				
	Dy1-O5	2.357(4)	Dy1-O2'	2.384(3)
	Dy1-O2	2.303(3)	Dy1-O1'	2.563(4)
	Dy1-O8	2.435(4)		
	O1'-Dy1-O3	144.57(14)	O2-Dy1-O1'	129.31(12)
	O2'-Dy1-O1'	64.22(12)	O2-Dy1-O2'	65.72(13)
	O2'-Dy1-O3	121.68(12)	O2-Dy1-O3	63.70(12)
	O2-Dy1-O4	82.45(13)	O2-Dy1-O5	146.71(13)
	O2'-Dy1-O6	73.44(13)	O2-Dy1-O6	82.34(12)
	O2-Dy1-O7	132.86(13)	O2'-Dy1-O8	68.61(14)
	O2-Dy1-O8	82.42(13)	O4-Dy1-O1'	140.88(14)
	O4-Dy1-O2'	133.28(15)	O4-Dy1-O3	64.39(15)
	O4-Dy1-O5	71.44(15)	O4-Dy1-O6	137.16(15)
	O4-Dy1-O7	92.24(16)	O4-Dy1-O8	74.27(17)
	O5-Dy1-O1'	75.28(17)	O5-Dy1-O2'	119.25(14)
	O5-Dy1-O3	118.87(14)	O5-Dy1-O6	130.92(13)
	O5-Dy1-O8	78.61(15)	O5-Dy1-O8	71.06(15)

O6-Dy1-O1'	76.59(14)	O6-Dy1-O3	72.95(14)
O6-Dy1-O8	142.05(15)	O7-Dy1-O1'	81.25(14)
O7-Dy1-O1'	81.25(14)	O7-Dy1-O2'	134.47(14)
O7-Dy1-O3	71.79(14)	O7-Dy1-O5	69.95(15)
O7-Dy1-O6	70.22(14)	O7-Dy1-O8	140.99(14)
O7-Dy1-O6	128.59(15)		

Table S4. Selected bond lengths (Å) and Angles (°) for ${\bf 2}$

Dy1-O3	2.267(4)	Dy1-O7	2.302(4)
Dy1-O4	2.311(5)	Dy1-O6	2.315(5)
Dy1-O5	2.321(5)	Dy1-O3'	2.324(4)
Dy1-O2	2.597(4)	Dy1-O1	2.627(4)
O3-Dy1-O7	142.30(15)	O3-Dy1-O4	93.19(17)
O7-Dy1-O4	79.65(18)	O3-Dy1-O6	90.09(16)
O7-Dy1-O6	73.52(16)	O4-Dy1-O6	139.56(17)
O3-Dy1-O5	107.64(18)	O7-Dy1-O5	104.96(18)
O4-Dy1-O5	71.43(16)	O6-Dy1-O5	144.57(17)

O3-Dy1-O3'	67.91(16)	O7-Dy1-O3'	139.08(15)
O4-Dy1-O3'	135.89(17)	O6-Dy1-O3'	82.11(15)
O5-Dy1-O3'	76.95(16)	O3-Dy1-O2	131.30(14)
O7-Dy1-O2	77.87(15)	O4-Dy1-O2	127.80(18)
O6-Dy1-O2	133.30(15)	O4-Dy1-O2	80.58(14)
O7-Dy1-O2	75.28(17)	O5-Dy1-O2	69.96(17)
O3'-Dy1-O2	64.23(14)	O3-Dy1-O1	64.48(14)
O7-Dy1-O1	78.61(15)	O4-Dy1-O1	68.66(17)

Table S5. Selected bond lengths (Å) and Angles (°) for ${\bf 3}$

Dy1-O3	2.316(4)	Dy1-O7	2.295(5)
Dy1-O4	2.317(4)	Dy1-O6	2.322(4)
Dy1-O5	2.330(4)	Dy1-O3'	2.261(4)
Dy1-O2	2.583(5)	Dy1-O1	2.594(4)
O3'-Dy1-O7	142.22(18)	O3'-Dy1-O3	67.27(15)
O7-Dy1-O3	137.01(17)	O3'-Dy1-O4	95.88(16)

O7-Dy1-O4	80.33(18)	O3-Dy1-O4	137.28(16)
O3'-Dy1-O6	87.95(15)	O7-Dy1-O6	73.24(17)
O3-Dy1-O6	80.09(14)	O4-Dy1-O6	140.56(16)
O3'-Dy1-O5	106.71(17)	O7-Dy1-O5	107.3(2)
O3-Dy1-O5	76.87(16)	O4-Dy1-O5	70.88(16)
O6-Dy1-O5	144.93(16)	O3'-Dy1-O2	132.31(15)
O7-Dy1-O2	76.48(19)	O3-Dy1-O2	65.43(16)
O6-Dy1-O2	78.45(18)	O5-Dy1-O2	68.06(18)
O7-Dy1-O1	79.07(18)	O3'-Dy1-O1	65.43(16)
O4-Dy1-O2	123.25(17)	O6-Dy1-O1	78.45(18)
O3-Dy1-O1	127.92(14)	O4-Dy1-O1	67.89(15)

Table S6. Continuous Shape Measures (CShMs) of the coordination geometry for Dy(III) ion in complexes 1, 1a, 2 and 3 (S values calculated with the Shape program). The *S* values indicated the proximity to the ideal polyhedron, thus, S = 0 corresponds to the non-distorted polyhedron. Three closer ideal geometries to the real complex are listed and below is the symmetry and description for each polyhedron.

	1	1a	2	3
JBTPR-8	16.990		3.305	
TT-8	14.686			14.070
BTPR-8	14.909		3.103	16.360
JSD-8			4.955	

JGBF-8			13.780
TCTPR-9		1.164	
CSAPR-9		1.300	
MFF-9		1.704	
JBTPR-8	C2v	Biaugmented trigonal prism J50	
TT-8	D2d	Triangular dodecahedron	
BTPR-8	C2v	Biaugmented trigonal prism	
JSD-8	D2d	Snub diphenoid J84	
JGBF-8	D2d	Johnson gyrobifastigium J26	
TCTPR-9	D3h	Spherical tricapped trigonal prism	
CSAPR-9	C4v	Spherical capped square antiprism	
MFF-9	Cs	Muffin	

Table S7. Parameters used to fit the Arrhenius plots from Fig. 4 using approximations $1/\tau = 1/\tau_{\text{QTM}} + CT^n + \tau_0^{-1} \exp(-U_{\text{eff}}/\kappa T)$ (1):

Zero dc field	1	1a		2	3
$ au_{\rm QTM}^{-1/{\rm S}^{-1}}$	0.0065	0.19	0.13		0.031
$C/s^{-1}k^{-n}$	3.59	0.037		0.0076	0.16
n	3.54	4.58		5.59	3.75
$ au_0/s$	6.7×10 ⁻⁷	5.02×10 ⁻⁷		2.75×10 ⁻¹⁰	1.9×10 ⁻⁸
U/k	18.1	70.3		126.3	109.5
$1/\tau = CT^{n} + \tau_0^{-1}e^{-1$	(2):				
Optimum field	1		1 <i>a</i>	2	3
C/s ⁻¹ k ⁻ⁿ	5.70		0.025	0.0077	0.034
n	3.04		4.92	5.63	4.54

τ_0/s	6.97×10 ⁻⁶	1.16×10 ⁻⁷	1.55×10 ⁻¹⁰	4.6×10 ⁻⁹
U/k	26.9	88.1	131.7	125.7

T/ K	$\chi_{\rm S}$ / cm ³ mol ⁻¹	$\chi_{\rm T}$ / cm ³ mol ⁻¹	τ/s	α	R
2	-0.03312	5.05899	0.03097	0.30000	4.9E-004
2.5	-0.03485	4.94485	0.02779	0.30000	4.7E-004
3	-0.01981	4.71217	0.02499	0.29993	4.5E-004
3.5	-0.04103	4.44415	0.02142	0.30000	3.5E-004
4	-0.05068	4.20219	0.01823	0.29993	2.9E-004
4.5	-0.05454	3.95570	0.01474	0.29365	2.8E-004
5	0.06124	3.72771	0.01166	0.28634	3.0E-004
5.5	-0.07120	3.55050	0.00928	0.28478	3.3E-004
6	-0.05677	3.31692	0.00700	0.26282	3.3E-004
6.5	-0.06532	3.16076	0.00550	0.26218	3.0E-004
7	-0.06745	2.98682	0.00419	0.25571	2.8E-004
7.5	-0.06306	2.84395	0.00321	0.25547	2.5E-004
8	-0.07713	2.70754	0.00241	0.26301	2.1E-004
8.5	-0.07558	2.58002	0.00177	0.27579	1.7E-004
9	-0.08103	2.47702	0.00128	0.29725	1.7E-004
9.5	-0.01583	2.35995	0.00091	0.30000	1.8E-004
10	0.05256	2.25143	0.00065	0.29984	2.1E-004
10.5	0.10776	2.15004	0.00044	0.29875	2.6E-004
11	0.24814	2.06991	0.00033	0.30000	2.4E-004
11.5	0.39647	1.99332	0.00026	0.29931	1.9E-0.004

Table S8. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for complex **3** under 0 Oe dc field in the temperature range 2-11 K.

Fig. S1. Molecular structure of complex 2 Colour code: Dy (teal), O (red), F (green),C (grey). H atoms and disorder atoms were omitted for clarity.

Fig. S2. Molecular structure of complex 3. Colour code: Dy (teal), O (red), F (green),C (grey), S (yellow). H atoms and disorder atoms were omitted for clarity.

Fig. S3. Molecular structure of complex 4. Colour code: Tb (teal), O (red), F (green),C (grey). H atoms and disorder atoms were omitted for clarity.

Fig. S4. Molecular structure of complex 4a. Colour code: Tb (teal), O (red), F (green),C (grey). H atoms and disorder atoms were omitted for clarity.

Fig. S5. Molecular structure of complex 5. Colour code: Er (teal), O (red), F (green), C (grey). H atoms and disorder atoms were omitted for clarity.

Fig. S6. Molecular structure of complex 6 Colour code: Gd (teal), O (red), F (green),C (grey). H atoms and disorder atoms were omitted for clarity.

Fig. S7. Molecular structure of 7. Colour code: Gd (teal), O (red), F (green), S (yellow), C (grey). H atoms and disorder atoms were omitted for clarity.

Fig. S8. Molecular structure of **3Y**. Colour code: Dy (teal), O (red), F (green), S (yellow), C (grey). H atoms and disorder atoms were omitted for clarity.

Fig. S9. PXRD analysis of complex 1-7. The red line is simulated data from single crystal data.

Fig. S10. FT-IR spectra of all the complexes.

Fig. S11. Temperature dependence of the $\chi_M T$ values T measured for 4, 4a, 5 complexes under 1000 Oe dc field.

With the known isotropic interaction, the Hamiltonian $H = -JS_{Gd1} \cdot S_{Gd2}$ results in the formula for the temperature dependence of the molar magnetic susceptibility in eqn (S1), where g is the Landé factor, β is the Bohr magneton, N is the Avogadro number, and k is the Bohrzmann constant and x = -J/kT.

$$\chi_m T = \frac{2Ng^2 \mu_B^2 e^x + 5e^{3x} + 14e^{6x} + 30e^{10x} + 55e^{15x} + 91e^{21}}{k + 1 + 3e^x + 5e^{3x} + 7e^{6x} + 9e^{10x} + 11e^{15x} + 13e^{15x}}$$
(S1)

Fig. S12. Temperature dependence of the $\chi_{\rm M}T$ versus *T* measured under 1000 Oe dc field for **6**. The solid line corresponds to the best fit for **6**.

Fig. S13. Temperature dependence of the $\chi_{\rm M}T$ versus *T* measured under 1000 Oe dc field for 7. The solid line corresponds to the best fit for 7.

Fig. S14. Magnetization versus field data for **6** and **7** under 2K. [The red solid line is the Brillouin function for two magnetically isolated Gd(III) ions with g = 2.0]

Fig. S15. Field dependences of magnetization in the field range 0-70 kOe and temperature range 2.0-8.0 K for 1(a), 2(b), 3(c) and 1a(d). Inset: Plots of the reduced magnetization *M* versus *H*/*T*.

Fig. S16. Temperature dependence of the in-phase (χ') for complex 3 under zero dc field.

Fig. S17. Temperature dependence of the in-phase (χ') and out-of-phase (χ'') for complex 1 under zero dc field.

Fig. S18. Frequency dependence of the in-phase (χ') and out-of-phase (χ'') for complex 1 under zero dc field.

Fig. S19. Temperature dependence of the in-phase (χ') and out-of-phase (χ'') for complex **1a** under zero dc field.

Fig. S20. Frequency dependence of the in-phase (χ') and out-of-phase (χ'') for complex **1a** under zero dc field.

Fig. S21. Temperature dependence of the in-phase (χ') and out-of-phase (χ'') for complex **2** under zero dc field.

Fig. S22. Frequency dependence of the in-phase (χ') and out-of-phase (χ'') for complex 2 under zero dc field.

Fig. S23. Plot of τ vs. *H* for 1(up), 2(middle), 3(bottom) under different dc fields at 2 K. The solid line is guide for eyes.

Fig. S24. Temperature dependence of the in-phase (χ') and out-of-phase (χ'') for complex 1 under 1100 Oe dc field.

Fig. S25. Frequency dependence of the in-phase (χ ') and out-of-phase (χ '') for complex 1 under 1100 Oe dc field.

Fig. S26. Temperature dependence of the in-phase (χ') and out-of-phase (χ'') for complex **1a** under 1500 Oe dc field.

Fig. S27. Frequency dependence of the in-phase (χ') and out-of-phase (χ'') for complex **1a** under 1500 Oe dc field.

Fig. S28. Temperature dependence of the in-phase (χ') and out-of-phase (χ'') for complex 2 under 1500 Oe dc field.

Fig. S29. Frequency dependence of the in-phase (χ') and out-of-phase (χ'') for complex **2** under 1500 Oe dc field.

Fig. S30. The Cole-Cole plots of **3** in the temperature range of 2-11 K. The red lines are the best fits using an extended Debye model.

Fig. S31. Temperature dependence of the out-of-phase (χ'') plot at 100 Hz (top left), 550 Hz (top right), 775 Hz (bottom left), 1000 Hz (bottom right) under 0 dc field for the diluted samples.

Fig. S32. Temperature dependence of the out-of-phase susceptibility (χ'') plot at 100 Hz (top left), 550 Hz (top right), 775 Hz (bottom left), 1000 Hz (bottom right) under 1500 Oe dc field for the diluted samples.

Fig. S33. Temperature dependence of out-of-phase (χ'') for **3M** under applied fields of 0 (left) and the 1500 Oe dc field (right).

Fig. S34. Frequency dependence of out-of-phase (χ') for **3M** under applied fields of zero (left) and 1500 Oe dc field (right). Inset: plot of ln(τ) vs. 1/*T*.

Fig. S35. Hysteresis loop for 10% Dy sample between 1.8 K and 3 K at the indicated sweep rates.

Fig. S36. Orientations of the local main magnetic axes of the ground doublets on Dy(III) ions of 1(up), 2(middle) and 3(bottom).

Fig. S37. Orientations of the local main magnetic axes of the ground doublets on Dy(III) ions of **1a**.

Computational details

There is only one type of Dy^{3+} ion for complex **1a**, and thus we need to calculate one Dy^{3+} fragment. There are two types of Dy^{3+} ions for each of complexes **1–3**, and thus we need to calculate two Dy^{3+} fragments for each of them. Complete-activespace self-consistent field (CASSCF) calculations on individual lanthanide Dy^{3+} fragment of the model structure extracted from each complex see Fig. S38 for the model structure) on the basis of X-ray determined geometry have been carried out with MOLCAS 7.8 program package.^{S1}

During the calculations, the other three Dy^{3+} ions for each complex were replaced by diamagnetic Lu^{3+} . The basis sets for all atoms are atomic natural orbitals from the MOLCAS ANO-RCC library: ANO-RCC-VTZP for Dy^{3+} ions; VTZ for close O and N; VDZ for distant atoms. The calculations employed the second order Douglas-Kroll-Hess Hamiltonian, where scalar relativistic contractions were taken into account in the basis set and the spin-orbit couplings were handled separately in the restricted active space state interaction (RASSI-SO) procedure. For the fragment of Dy^{3+} , active electrons in 7 active spaces include all *f* electrons (CAS(9 in 7) in the CASSCF calculation. We have mixed the maximum number of spin-free state which was possible with our hardware (all from 21 sextets, 128 from 224 quadruplets, 130 from 490 doublets for the Dy^{3+} fragment).

Fig. S38. Calculated model structure of complex 1 and 1a. H atoms are omitted for clarity.

To fit the exchange interactions in four complexes, we took two steps to obtain them. Firstly, we calculated one Dy³⁺ fragment using CASSCF to obtain the corresponding magnetic properties. And then, the exchange interaction between the magnetic centers is considered within the Lines model,^{S2} while the account of the dipole-dipole magnetic coupling is treated exactly. The Lines model is effective and has been successfully used widely in the research field of f-element single-molecule magnets.^{S3}

For each of complexes 1-3, there is only one type of J.

The exchange Hamiltonian is:

)
$$H_{exch} = -J^{total} \hat{S}_{By1} \hat{S}_{By2}$$

The J^{total} is the parameter of the total magnetic interaction $(J^{total} = J^{diploar} + J^{exchange})$

between magnetic center ions. The $\hat{\mathscr{Y}}_{\mathfrak{B}_{y}} = \pm 1/2$ are the ground pseudospin on the Dy³⁺ sites. The dipolar magnetic coupling can be calculated exactly, while the exchange coupling constants were fitted through comparison of the computed and measured magnetic susceptibility and molar magnetization using the POLY_ANISO program.^{S4}

1	1		2		3		a
E	g	Ε	g	Ε	g	Ε	g
0.0	0.023	0.0	0.037	0.0	0.041	0.0	0.0297
	0.085		0.047		0.184		0.0651
	18.851		19.556		18.867		19.0179
30.1	0.024	45.3	0.014	39.3	0.082	101.2	0.0858

Table S9. Energies (cm⁻¹) and g (g_x, g_y, g_z) tensors of the lowest spin-orbit states on one Dy³⁺ fragment of Dy-based complexes.

	0.109		0.067		0.119		0.1697
	18.447		19.264		18.644		16.5708
134.5	0.295	138.5	0.222	147.3	0.356	188. 7	0.3476
	0.419		0.528		0.512		0.4634
	13.971		14.177		15.266		14.4674
172.2	5.238	193.8	8.284	197.3	1.527	229.4	1.6494
	5.913		6.129		2.012		3.4311
	8.048		3.782		9.274		13.4552
220.9	1.383	236.2	1.932	236.1	0.220	246.6	3.0649
	1.952		3.340		1.006		5.0623
	11.236		10.514		16.902		9.1534
311.5	0.055	321.5	0.103	251.7	4.485	295.9	1.4416
	1.036		0.761		6.266		2.2017
	13.765		13.880		9.155		12.0112
346.7	0.382	363.6	0.324	310.8	0.693	399.0	0.1553
	0.689		0.496		1.595		0.2894
	17.660		17.974		14.603		17.0576
474.2	0.033	487.3	0.032	443.6	0.033	591.1	0.0188
	0.059		0.055		0.089		0.0270
	19.229		19.299		19.051		19.5881

Table S10. Exchange energies (cm⁻¹) and main values of the g_z for the lowest two exchange doublets.

	1		2		3		1a	
	Ε	gz	Ε	gz	Ε	g _z	Ε	gz
1	0.0	0.000	0.0	0.000	0.0	0.000	0.0	38.043

2	2.5	37.540	2.9	39.103	1.4	37.625	1.9	0.000

References:

- S1 G. Karlstrom, R. Lindh, P. A. Malmqvist, B. O. Roos, U. Ryde, V. Veryazov, P. O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady and L. Seijo, MOLCAS: a Program Package for Computational Chemistry, *Comput. Mater. Sci.* 2003, 28, 222.
- S2 M. E. Lines, J. Chem. Phys., 1971, 55, 2977.
- S3 (a) K. C. Mondal, A. Sundt, Y. H. Lan, G. E. Kostakis, O. Waldmann, L. Ungur, L. F. Chibotaru, C. E. Anson and A. K. Powell, *Angew. Chem. Int. Ed.* 2012, **51**, 7550. (b) S. K. Langley, D. P. Wielechowski, V. Vieru, N. F. Chilton, B. Moubaraki, B. F. Abrahams, L. F. Chibotaru and K. S. Murray, *Angew. Chem. Int. Ed.*, 2013, **52**, 12014.
- S4 (a) L. F. Chibotaru, L. Ungur and A. Soncini, *Angew. Chem. Int. Ed.*, 2008, 47, 4126. (b) L. Ungur, W. Van den Heuvel and L. F. Chibotaru, *New J. Chem.*, 2009, 33, 1224. (c) L. F. Chibotaru, L. Ungur, C. Aronica, H. Elmoll, G. Pilet and D. Luneau, *J. Am. Chem. Soc.*, 2008, 130, 12445.