Electronic Supplementary Information

Enhanced visible-light photocatalytic hydrogen production activity of three-dimensional mesoporous p-CuS/n-CdS nanocrystal assemblies

Ioannis Vamvasakis,^a Adelaida Trapali,^a Jianwei Miao,^b Bin Liu^b and Gerasimos S. Armatas^{*a}

^aUniversity of Crete, Department of Materials Science and Technology, Vassilika Vouton, Heraklion 71003, Greece.

^bNanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Singapore.

*E-mail: garmatas@materials.uoc.gr

Photocatalyst	Reaction conditions	Light source	H ₂ -production activity (QE at λ=420 nm)	Ref.
MoS ₂ /CdS composites	0.1 g catalyst, 10 vol% lactic acid solution	300-W Xe lamp (λ>420 nm)	~0.53 mmol h ⁻¹	[5]
WS ₂ /CdS particles	0.1 g catalyst, 10 vol% lactic acid solution	300-W Xe lamp (λ>420 nm)	~0.42 mmol h ⁻¹ (QE~5%)	[6]
NiS/CdS composites	0.3 g catalyst, 30 vol% lactic acid solution	300-W Xe lamp (λ>420 nm)	~2.18 mmol h ⁻¹ (QE~51.3%)	[7]
Pt/CdS nanostructures	0.15 g catalyst, 0.25 M Na ₂ SO ₃ /0.35 M Na ₂ S solution	300-W Xe lamp (λ>420 nm)	~4.1 mmol h ⁻¹ (QE~60.3%)	[8a]
Pt/CdS NCAs	20 mg catalyst, 10 vol% ethanolic alkaline (5M NaOH) solution	300-W Xe lamp (λ>420 nm)	~1.2 mmol h ⁻¹ (QE~70%)	[8b]
CuS/ZnS nanosheets	0.2 g catalyst, 0.25 M Na ₂ SO ₃ /0.35 M Na ₂ S solution	350-W Xe lamp (λ>420 nm)	~0.21 mmol h ⁻¹ (QE~20%)	[14]
Co ₃ O ₄ /CdS nanocomposites	50 mg catalyst, 10 vol% lactic acid solution	350-W Xe lamp (λ>420 nm)	~0.15 mmol h ⁻¹ (QE~9.7%)	[25a]
Cu ₂ S/CdS nanoparticles	0.2 g catalyst, 0.25 M Na ₂ SO ₃ /0.35 M Na ₂ S solution	300-W Xe lamp (λ>420 nm)	$\sim 0.4 \text{ mmol h}^{-1}$ (QE~9.5%)	[25b]
Cd _{0.8} Zn _{0.2} S particles	0.2 g catalyst, 0.25 M Na ₂ SO ₃ /0.35 M Na ₂ S solution	350-W Xe lamp (λ>430 nm)	~0.18 mmol h ⁻¹ (QE~10.2%)	[25c]
CdS/Zn _{0.2} Cd _{0.8} S composites	0.2 g catalyst, 0.04 M Na ₂ SO ₃ /0.1 M Na ₂ S solution	350-W Xe lamp (λ>400 nm)	~0.11 mmol h ⁻¹ (QE~6.3%)	[25d]
Cd _{0.1} Cu _{0.01} Zn _{0.89} S particles	0.3 g catalyst, 0.3 M Na ₂ SO ₃ /0.2 M Na ₂ S solution	350-W Xe lamp (λ>430 nm)	~0.35 mmol h ⁻¹ (QE~9.6%)	[25e]
(Zn _{0.95} Cu _{0.05}) _{0.67} Cd _{0.33} S NCs	0.3 g catalyst, 0.35 M Na ₂ SO ₃ /0.25 M Na ₂ S solution	300-W Xe lamp (λ>420 nm)	~0.51 mmol h ⁻¹ (QE~15.7%)	[25f]
CdS/CNTs nanocomposites	35 mg catalyst, 0.25 M Na ₂ SO ₃ /0.35 M Na ₂ S solution	300-W Xe lamp (λ>420 nm)	~0.17 mmol h ⁻¹ (QE~2.1%)	[25g]
ZnS-In ₂ S ₃ -CuS nanospheres	0.3 g catalyst, 1.2 M Na ₂ SO ₃ /0.1 M Na ₂ S solution	300-W Xe lamp (λ>400 nm)	~3.6 mmol h ⁻¹ (QE~22.6%)	[25h]
CdS-ZnS-In ₂ S ₃ microspheres	15 mg catalyst, 1.4 M Na ₂ SO ₃ /0.1 M Na ₂ S solution	300-W Xe lamp (λ>400 nm)	~0.12 mmol h ⁻¹ (QE~40.9%)	[25i]
ZnS-In ₂ S ₃ -Ag ₂ S nanostructures	15 mg catalyst, 0.35 M Na ₂ SO ₃ /0.25 M Na ₂ S solution	300-W Xe lamp (λ>400 nm)	~3.3 mmol h ⁻¹ (QE~19.8%)	[25j]

Table S1. Comparison of H₂-production activity of different metal sulfide photocatalysts studied under similar experimental conditions.

Pt/Ag ₂ S/CdS composites	0.1 g catalyst, 0.25 M Na ₂ SO ₃ /0.35 M Na ₂ S solution	150-W solar simulator (AM1.5)	~0.09 mmol h ⁻¹	[25k]
MoS ₂ /mpg-C ₃ N ₄ composites	20 mg catalyst, 10 vol% lactic acid solution	300-W Xe lamp (λ>420 nm)	~0.02 mmol h ⁻¹ (QE~2.1%)	[251]
CuS/CdS NCAs	20 mg catalyst, 0.25 M Na ₂ SO ₃ /0.35 M Na ₂ S solution	300-W Xe lamp (λ>420 nm)	~0.28 mmol h ⁻¹ (QE~12.6%)	In this work

Table S2. Analytical data obtained from Mott-Schottky plots for pristine CdS and different Cu-loaded CdS NCAs.

Sample	E _{FB} (V vs. NHE)	Slope ^a (F ⁻² cm ⁴ V ⁻¹)	Donor concentration ^b (cm ⁻³)
CdS NCAs	-0.41	4.034×10^{10}	3.93×10^{16}
3% CuS/CdS	-0.44	4.825×10^{10}	3.28×10^{16}
5% CuS/CdS	-0.43	4.267×10^{10}	3.71×10^{16}
8% CuS/CdS	-0.51	3.466×10^{10}	4.55×10^{16}

^aSlope (k) = $1/(E-E_{FB})C^2$, where C is the space charge capacitance, *E* is the applied potential and E_{FB} is the flat-band potential. ^bDonor concentration (N_D) given by N_D = $2(E-E_{FB})\cdot C^2/\varepsilon\varepsilon_o e$, where ε is the relative dielectric constant of CdS (8.9), ε_o is the dielectric permittivity (8.8542×10⁻¹⁰ F cm⁻¹) and e is the elementary charge (1.602×10⁻¹⁹ C).

Fig. S1 Typical EDS spectra of the mesoporous Cu-loaded CdS NCAs.

Fig. S2 High-resolution Cd $3d_{5/2}$ and $3d_{3/2}$ core-level photoelectron spectra of the mesoporous 5% CuS/CdS NCAs before and after photocatalytic reaction.

Fig. S3 Nitrogen adsorption-desorption isotherms at -196 °C for the mesoporous (a) 3% CuS/CdS and (b) 8% CuS/CdS NCAs catalysts. Insets: The corresponding NLDFT pore size distributions calculated from the adsorption branch of isotherms.

Fig. S4 Typical EDS spectrum of the bulk Cu-loaded CdS solid.

Fig. S5 Nitrogen adsorption-desorption isotherms at -196 °C for the bulk Cu-loaded CdS solid (5% CuS/CdS bulk). Analysis of the adsorption data indicates a BET surface area of 45 m² g⁻¹ and a total pore volume of 0.08 cm³ g⁻¹.

Fig. S6 Typical EDS spectrum of the regenerated mesoporous 5% CuS/CdS NCAs catalyst, showing a Cu content of ~5.09 mol%.

Fig. S7 Nitrogen adsorption-desorption isotherms at -196 °C and the corresponding NLDFT pore size distribution (inset) for the 5% CuS/CdS NCAs catalyst retrieved after 20 hours of photocatalytic reaction.