Supporting Information

Stimuli Responsive Furan and Thiophene Substituted Difluoroboron β-Diketonate Materials

*William A. Morris, Tristan Butler, Milena Kolpaczynska, Cassandra L. Fraser** Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904

Scheme S1. Synthesis of Furan-Substituted Difluoroboron β-Diketonate Dyes

BF₂fbmOMe. The ligand fbmOMe¹ was prepared by Claisen condensation of the 2-furyl methyl ketone (0.360 g, 3.27 mmol) and 4-nitrophenyl-4-methoxybenzoate (0.890 g, 3.26 mmol) in THF in the presence of NaH (0.136 g, 5.67 mmol) under a nitrogen atmosphere. The reaction mixture was refluxed for 22 h, allowed to cool to RT, quenched with 1 M HCl, then THF was removed *via* rotary evaporation. The organic layer was extracted with CH₂Cl₂ (2 × 20 mL), washed with H₂O (2 × 20 mL) and brine (10 mL) then dried over Na₂SO₄. After filtration, and concentration *in vacuo*, the residue was purified by column chromatography on silica gel eluting with hexanes/EtOAc (4:1) to give the ligand as a yellow solid: 377 mg (47%). The fbmOMe ligand (200 mg, 0.82 mmol) was dissolved in

THF (25 mL), and boron trifluoride diethyl etherate (152 μ L, 1.23 mmol) was added at room temperature under a nitrogen atmosphere. The reaction mixture was heated at 60° C and monitored by TLC until consumption of ligand substrate was complete (20 h). The reaction mixture was filtered and the solvent was removed *via* rotary evaporation. The product was purified by column chromatography with hexanes:EtOAc (3:1) and an orange powder was obtained: 63 mg (47%). ¹H NMR (600 MHz, CDCl₃, ppm) δ 8.14 (d, 2H, *J* = 12.0 Hz, 2, 6-Phen*H*), 7.75 (broad s, 1H, 2-Fur*H*), 7.55 (d, 1H, *J* = 3.6 Hz, 4-Fur*H*), 7.03 (d, 2H, *J* = 6.0 Hz, 3, 5-Phen*H*), 6.71 (m, 1H, 3-Fur*H*), 6.98 (s, 1H, COC*H*CO), 3.93 (s, 3H, OC*H*₃). HRMS (ESI, TOF) m/z calcd for C₁₄H₁₁BF₂O₄ 292.07, found 315.0620 [M + Na]⁺.

BF₂fbmOC12. The ligand fbmOC12 was prepared by Claisen condensation of the 2furyl methyl ketone (1.00 g, 9.08 mmol) and methyl-4-(dodecyloxy)benzoate (2.33 g, 7.28 mmol) in THF in the presence of NaH (0.436 g, 18.17 mmol) under a nitrogen atmosphere. The reaction mixture was heated at 60 °C under a nitrogen atmosphere and monitored by TLC. After 22 h the reaction mixture was removed from the heat and allowed to cool to RT and quenched with 1 M HCl. The THF was removed *via* rotary evaporation. Organics were extracted with CH₂Cl₂ (20 mL × 2), washed with H₂O (20 mL × 2) and brine (10 mL) then dried over Na₂SO₄. After a filtration, and concentration *in vacuo*, the residue run through silica gel column eluting with hexanes/EtOAc (4:1) to give the ligand as a yellow solid. The boron dye, BF₂fbmOC12 was made as described for BF₂fbmOMe but with the fbmOC12 ligand. The product was purified by recrystallization from hexanes to give a yellow solid: 204 mg (37%). ¹H NMR (600 MHz, CDCl₃, ppm): 8.11 (d, 2H, *J* = 12.0 Hz, 2, 6-Phen*H*), 7.73 (broad s, 1H, 2-Fur*H*), 7.53 (d, 1H, J = 3.6 Hz, 4-Fur*H*), 6.98 (m, 3H, 3-Fur*H*, 3, 5-Phen*H*), 6.69 (s, 1H, COC*H*CO), 4.06 (t, 2H, J = 6.0 Hz, OC $H_2C_{11}H_{23}$), 1.83-1.81 (m, 2H, OC $H_2CH_2C_{10}H_{21}$), 1.46-1.25 (m, 18H, OC $H_2CH_2C_9H_{18}CH_3$), 0.87 (t, 3H, J = 6.0 Hz, CH $_2CH_3$). HRMS (ESI, TOF) m/z calcd for C $_{25}H_{33}BF_2O_4$ 446.24, found 447.2519 [M + H]⁺ and 469.2337 [M + Na]⁺.

Figure S1. Absorption (left) and fluorescence emission (right) spectra of thiophene and furan-substituted dyes in CH₂Cl₂ solution.

Table S1. Solid State Emission Properties of Boron Dyes as Pristine Powders.

Dye	λ_{em}^{a}	τ_F^{b}	FWHM
	(nm)	(ns)	(nm)
BF ₂ tbmOMe	593	5.0	105
BF ₂ tbmOC12	485	3.6	83
BF ₂ fbmOMe	601	10.7	108
BF ₂ fbmOC12	594	4.1	N/A

^a Peak emission wavelength ($\lambda_{ex} = 369 \text{ nm}$), ^b Pre-exponential weighted fluorescence lifetimes excited with a 369 nm light-emitting diode (LED) monitored at the emission maximum. All fluorescence lifetimes are fitted with double-exponential decay.

Figure S2. Excitation spectra of the BF₂fbmOC12 dye recorded at the indicated emission wavelengths.

Table S2. Optical Properties of Boron Dyes as Films on Both Weighing Paper and Glass Substrates.

		As-Spun			Thermally Annealed		Smeared		
Dye	λ _{em} ^b	τ_{pw0}^{c}	FWHM	λ _{em} ^b	$ au_{pw0}^{c}$	FWHM	λ_{em}^{b}	τ_{pw0}^{c}	FWHM
	[nm]	[ns]	[nm]	[nm]	[ns]	[nm]	[nm]	[ns]	[nm]
		4.06 (40.57%)			2.32 (11.57%)			6.76 (31.02%)	
BF_tbmOC12		0.81 (17.39%)			7.65 (88.43%)			9.62 (4.08%)	
(Glass)	525	13.95 (42.05%)	135	486	7.03 (τ_{nw0})	68	570	15.39 (64.90%)	119
(7.65 (τ_{pw0})			P#07			$12.12 (\tau_{pw0})$	
	Heated Green			Heated Orange		TA (125 °C, 10 min)			
		0.26 (74.06%)			4.34 (51.06%)			3.77 (1.48%)	
BF ₂ fbmOC12	517	2.44 (20.61%)	127	553	0.88 (19.11%)	155	509	0.02 (96.66%)	84
(Paper)		17.48 (29.89%)			17.48 (29.89%)			10.44 (4.86%)	
		$0.80 (\tau_{pw0})$			7.61 (τ_{pw0})			$0.58 (\tau_{pw0})$	
					As-Spun				
	λb			τ_{c}^{c}		FWHM ^d			
	[nm]		[ns]		[nm]				
					8.47 (9.09%)				
BF ₂ fbmOC12		597			29.44 (90.91%)			114	
(Glass)					27.53 (τ_{pw0})				

^a $\lambda_{ex} = 369$ nm; room temperature, air. ^b Emission maximum; fluorescence.

^c Pre-exponential weighted fluorescence lifetime.

^d Full Width at Half Maximum.

Note: Emission lifetimes were multi-exponential, and the decay traces of emission intensity at λ_{em} and the % weighting factors (WF) were analyzed using DataStation version 2.6 software from Horiba Jobin Yvon. τ_{pw0} was calculated as follows:

$$\tau_{pw0} = \sum_{i=1}^{N} WF_i \cdot \tau_i$$

where N is the number of decay components, WF_i is the weighting factor, τ_i is the component of decay lifetimes, and τ_{PW0} is the pre-exponential weighted lifetime.²

Figure S3. Absorption spectra of BF_2 fbmOC12 in CH_2Cl_2 solution. The original spectrum of the pristine powder dissolved in CH_2Cl_2 is compared to the heated green and heated orange forms after they were redissolved and their absorption spectra recorded.

Figure S4. DSC thermograms (ramp rate: 5 °C/min; second heating cycles, after a conditioning cycle) (A = BF₂fbmOMe, B = BF₂tbmOMe, C = BF₂tbmOC12, D = BF₂fbmOC12).

Full Computational Details

All compounds were modeled using the Gaussian 09 suite of programs using density functional theory (DFT).³ We chose B3LYP/6-31+G(d) for ground state geometry optimization with a Tomasi polarized continuum for dichloromethane solvent.⁴ The vibrational frequencies for the optimized geometries were all positive, assuring that the geometries are at least a local minimum. Single point energy calculations were used to generate the molecular orbital diagrams utilizing B3LYP/6-31G(d). We used time-dependent density functional theory, TD-B3LYP/6-311+G(d) for estimates of the absorption spectra, at the respective optimized geometries.2,3 The first three excited states were computed for each compound. Molecular orbitals were depicted by GaussView 5 software.⁵

Table S3. B3LYP/6-31+G(d) optimized structures for future TD-DFT calculations in dichloromethane. Coordinates given in Cartesian, in Angstroms.

BF₂tbmOMe: E (HF) = -1388.75052444

C, -0.477890, 0.355937, -0.011772 C, 0.614466, -0.508141, 0.126683 H, 0.464047, -1.565011, 0.283980 O, 2.133345, 1.278315, -0.164933 C, 1.912630, -0.006943, -0.004006 C, -1.873414, -0.079247, -0.015357 C, -2.238571, -1.445633, -0.016885 C, -2.902205, 0.882420, -0.018435

BF₂tbmOC3: E(HF) = -1467.38517722

B, 1.953805, 2.290010, 0.018338 F, 2.049312, 2.798353, 1.317567 F, 2.140271, 3.287382, -0.928444 O, 0.604035, 1.697146, -0.170659 C, 0.366378, 0.414672, -0.009728 C, 1.430839, -0.483972, 0.128836 H, 1.247355, -1.535148, 0.288446 O, 3.006392, 1.251532, -0.169862 C, 2.744037, -0.025641, -0.005775 C, -1.041980, 0.024947, -0.010705 C, -1.451350, -1.328971, -0.005690 C, -2.039915, 1.018834, -0.016502 C, -2.792797, -1.666170, -0.002540 H, -0.720538, -2.130276, -0.015904 C, -3.392012, 0.692602, -0.011495 H, -1.746763, 2.062685, -0.018794 C, -3.779662, -0.659266, -0.004123 H, -3.106577, -2.705409, -0.003466

```
H, -4.129490, 1.486399, -0.011121
C, 3.894415, -0.901321, -0.004132
C, 3.938393, -2.286599, 0.057276
S, 5.508989, -0.228339, -0.092033
C, 5.257998, -2.799077, 0.037356
H, 3.055298, -2.913313, 0.109799
C, 6.206714, -1.802630, -0.041747
H, 5.499531, -3.855247, 0.077023
H, 7.283295, -1.914268 -0.073019
O, -5.060415, -1.090053, -0.000753
C, -6.136614, -0.128928, -0.013580
H, -6.055001, 0.512366, 0.873262
H, -6.047389, 0.496887, -0.910680
C, -7.449455, -0.897649, -0.011962
H, -7.481793, -1.542765, 0.875065
H, -7.476940, -1.555444, -0.889782
C, -8.658672, 0.045737, -0.021916
H, -8.660410, 0.685270, -0.913268
H, -9.592725, -0.526316, -0.020253
H, -8.664938, 0.697935, 0.860175
```

BF₂fbmOMe: E (HF) = -1065.77175714

B, -1.358574, 2.226738, 0.012859 F, -1.529753, 3.221209, -0.939848 F, -1.445086, 2.743624, 1.309147 O, -0.017365, 1.612934, -0.173240 C, 0.201948, 0.326534, -0.015932 C, -0.875329, -0.555596, 0.119118 H, -0.711798, -1.611715, 0.270693 O, -2.430252, 1.205581, -0.167665 C, -2.180008, -0.070616, -0.010586 C, 1.605045, -0.083523, -0.017739 C, 1.994301, -1.443174, -0.016333 C, 2.616587, 0.896183, -0.020631 C, 3.330866, -1.799990, -0.013306 H, 1.251679, -2.233531, -0.028886 C, 3.964050, 0.550189, -0.015911 H, 2.338299, 1.944061, -0.020571 C, 4.330515, -0.806704, -0.011548 H, 3.629892, -2.843520, -0.016515 H, 4.713434, 1.332933, -0.013033

C, -3.325855, -0.946011, -0.008985
C, -3.465932, -2.317200, 0.067186
O, -4.566794, -0.366235, -0.098147
C, -4.859809, -2.586287, 0.024174
H, -2.668745, -3.043737, 0.141668
C, -5.477374, -1.366615, -0.076452
H, -5.343678, -3.552179, 0.061361
H, -6.511731, -1.062234, -0.138998
O, 5.606594, -1.255843, -0.007143
C, 6.681325, -0.306603, -0.010065
H, 6.647465, 0.322728, 0.885765
H, 7.594334, -0.901924, -0.007891
H, 6.647818, 0.316911, -0.909961

Table S4. Characterizations of Spectra Computed in Solvent Dichloromethane (PCM-Tomasi as implemented in Gaussian).

Note: Max amplitude is 0.70714 for a pure one-electron excitation. The highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) transitions are in bold.

BF₂tbmOMe

F▲B[·],F O⁻B[·]O ∬ _∫ OCH3

Excited State 55 -> 56	1: Singlet-A 0.69791	3.6394 eV 340.67 nm f=0.7020 <s**2>=0.000</s**2>
Excited State 54 -> 56 55 -> 56	2: Singlet-A 0.69496 -0.10029	4.0132 eV 308.94 nm f=0.0269 <s**2>=0.000</s**2>
Excited State 53 -> 56 55 -> 57	3: Singlet-A 0.69228 0.10465	4.6387 eV 267.28 nm f=0.0516 <s**2>=0.000</s**2>

BF₂tbmOC3

Excited State 87 -> 88	1: Singlet-A 0.70565	3.0430 eV 407.44 nm f=1.1477 <s**2>=0.000</s**2>
Excited State 84 -> 88 86 -> 88	2: Singlet-A -0.19039 0.66326	3.7549 eV 330.19 nm f=0.0695 <s**2>=0.000</s**2>
Excited State 84 -> 88 85 -> 88	3: Singlet-A -0.19986 0.66978	3.9128 eV 316.87 nm f=0.0035 <s**2>=0.000</s**2>
BF ₂ fbmOMe F _• B [·] F O [·] B [·] O	OCH₃	
Excited State 75 -> 76	1: Singlet-A 0.70675	3.0808 eV 402.45 nm f=1.1330 <s**2>=0.000</s**2>
Excited State 73 -> 76 74 -> 76	2: Singlet-A 0.21864 0.66300	3.8072 eV 325.66 nm f=0.0738 <s**2>=0.000</s**2>
Excited State	3: Singlet-A	4.0112 eV 309.09 nm f=0.0539 <s**2>=0.000</s**2>

73 -> 76 0.65321 74 -> 76 -0.21043

Table S5. Gaussview traces of computed TD-B3LYP/6-311+G(d) absorption spectra for compounds 1-3 in CH_2Cl_2 represented by Tomasi's Polarizable Continuum Model.

BF₂fbmOMe

References

- (1) Li, X.; Zou, Y. Q. In Z. Krist.-New Cryst. St. 2004, 219, 301.
- (2) Carraway, E. R.; Demas, J. N.; DeGraff, B. A.; Bacon, J. R. Anal. Chem. 1991, 63, 337.
- (3) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Wallingford CT, 2009.
- (4) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.
- (5) Dennington, R. In Version 5; Keith, T., Ed.; Semichem Inc.: Shawnee Mission, KS, 2009.