Electronic Supplementary Information (ESI)

Facile Solvothermal Synthesis and Superior Lithium Storage Capability of Co₃O₄ Nanoflowers with Multi-scale Dimensions

Bin Wang^b, Xiao-Ying Lu^a, King Yan Wong^a and Yuanyuan Tang^c

^{*a*} Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong, P.R. China. Email: xylu@vtc.edu.hk Fax: +852-21761554; Tel: +852-21761453

^b Hong Kong Applied Science and Technology Research Institute, Hong Kong, P.R.
China. Email: hku507@gmail.com, bwang@astri.org Fax: +852-34062802; Tel: +852-34062561

^c School of Environmental Science and Engineering, South University of Science and Technology of China, Shenzhen, 518055, P.R. China

Fig. S1: Typical FE-SEM images of Co_3O_4 -MF precursors synthesized with 8 mL NH_3 in solvothermal synthesis

Fig. S2: Typical FE-SEM images of precursors synthesized with NH_3 of 12 mL and 2 mL in solvothermal synthesis (a,b) 12 mL NH_3 ; (c,d) 2 mL NH_3

Fig. S3: pH values of reactant solution as a function of added ammonia before and after solvothermal treatment

Fig. S4: XRD patterns of flower-like precursors (Co₃O₄-NF and Co₃O₄-MF)

Fig. S5: TGA curve of Co₃O₄-NF products tested with a heating rate of 10°C min⁻¹

Fig. S6: High resolution N1s spectra of Co₃O₄-NF precursors and products

Fig. S7: FE-SEM image of commercial Co₃O₄ micro-/nanoparticles (Co₃O₄-NP)

Fig. S8: Typical FE-SEM images of Co_3O_4 -NF after electrochemical measurement at a current density of 500 mAh g⁻¹ for 100 cycles

Fig. S9: C-rate performance of commercial Co₃O₄ with micro-/nanoparticles (Co₃O₄-NP) under different current densities

Table S1: Specific surface areas, pore size distributions and pore sizes of Co_3O_4 -NF and Co_3O_4 -MF

Sample name	Specific surface area	Pore volume	Average pore size		
	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)		
Co ₃ O ₄ -NF	103.9	0.587	22.6		
Co ₃ O ₄ -MF	83.6	0.308	N.A.		

Co ₃ O ₄ material morphologies	Specific surface area (m ² g ⁻¹)	Average pore size (nm)	Current density (mA g ⁻¹)	First discharge/ charge capacity (mAh g ⁻¹)	Coulombic efficiency	Cycling number	Discharge capacity after cycling (mAh g ⁻¹)	Capacity retention	References
Nanoflowers	103.9	22.6	500	1311.6 /992.3	75.6%	100	1323	~100%	This work
Microflowers	83.6	N.A.	500	1160.9 /876.6	75.5%	100	1281	~110%	This work
Nanoflowers	51.2	12.6	50	1849/1196	64.7%	30	~980	53%	[1]
Flower-like spheres	72.5	4.6	50	1316.7/899.1	68.3%	20	~250	~19%	[2]
Nanobundles	26.4	22.0	100	1670.8/1341	80.3%	60	1667.6	99.8%	[3]
Nanocages	110.6	10	500	975/786	80.6%	100	810	83%	[4]
Nanowire arrays	20.2	8	100	1732/1081	62.4%	70	~550	~69%	[5]
Microdisks	108.9	9.7	100	1032/776	75.2%	30	765	~100%	[6]
Mesoporous octahedra	48.5	9	200	1567/~1176	~75%	60	1178	~75%	[7]
Hollow microspheres	12.8	5~7	178	1298/991.7	76.4%	50	1441.1	111%	[8]
Pompon-like spheres	29.5	17	50	1552/1169	75%	30	~1000	~64%	[9]
Nanobelts	36.5	29.2	100	1204/N.A.	N.A.	60	980	~81%	[10]

Table S2: Comparison of material characteristics and electrochemical performances with various structured Co₃O₄ materials

References

- 1. H. Sun, M. Ahmad and J. Zhu, *Electrochim. Acta*, 2013, **89**, 199-205.
- J. Zheng, J. Liu, D. Lv, Q. Kuang, Z. Jiang, Z. Xie, R. Huang and L. Zheng, J. Solid State Chem., 2010, 183, 600-605.
- 3. Y. Xiao, C. Hu and M. Cao, J. Power Sources, 2014, 247, 49-56.
- Y. Wang, B. Wang, F. Xiao, Z. Huang, Y. Wang, C. Richardson, Z. Chen, L. Jiao and H. Yuan, *J. Power Sources*, 2015, 298, 203-208.
- S. Xiong, J. S. Chen, X. W. Lou and H. C. Zeng, *Adv. Funct. Mater.*, 2012, 22, 861-871.
- Y. Jin, L. Wang, Y. Shang, J. Gao, J. Li and X. He, *Electrochim. Acta*, 2015, 151, 109-117.
- J. Guo, L. Chen, X. Zhang, B. Jiang and L. Ma, *Electrochim. Acta*, 2014, 129, 410-415.
- J.-W. Wen, D.-W. Zhang, Y. Zang, X. Sun, B. Cheng, C.-X. Ding, Y. Yu and C.-H. Chen, *Electrochim. Acta*, 2014, **132**, 193-199.
- W. Hao, S. Chen, Y. Cai, L. Zhang, Z. Li and S. Zhang, J. Mater. Chem. A, 2014, 2, 13801-13804.
- H. Huang, W. Zhu, X. Tao, Y. Xia, Z. Yu, J. Fang, Y. Gan and W. Zhang, ACS Appl. Mater. Interfaces, 2012, 4, 5974-5980.