Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2016

Electronic Supplementary Information for

Dicyanopyrazine Capped with Tetraphenylethylene: Polymorphs with High Contrast Luminescence as Organic Volatile Sensor

Chao Ge, Yang Liu,* Xin Ye, Xiaoxin Zheng, Quanxiang Han, Jie Liu and Xutang Tao

State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China

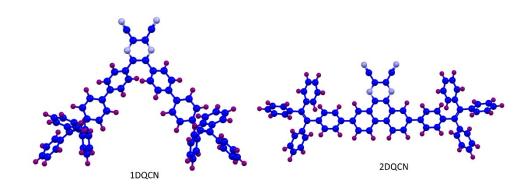

E-mail: liuyangicm@sdu.edu.cn, txt@sdu.edu.cn

Table of Contents

- 1. Fig. S1 The geometry-optimized molecular structure plots (optimized by using density functional theory calculation at the DFT/B3LYP/6-31G(d) level).
- 2. Fig. S2 The whole transformation process of 2DQCN from yellow to red in the centrifuge tube.
- 3. Fig. S3 Fluorescence spectra of (a) 1DQCN and (b) 2DQCN before and after grinding.
- **4. Fig. S4** The fluorescence images and PXRD patterns of **2DQCN** amorphous state before and after grinding.
- **5. Fig. S5** TGA thermogram of **2DQCN** recorded under N_2 atmosphere at a heating rate of 10 $^{\circ}$ C/min.
- **6. Fig. S6** ¹H NMR spectra of **2DQCN** in chloroform-d after annealing at 260 $^{\circ}$ C for more than ten minutes.

- **7. Fig. S7** The XRD patterns of **2DQCN** crystalline films before and after exposure to CH₂Cl₂ and cyclohexane solvents.
- 8. Synthesis
- 9. NMR Spectra of Compound (4), (5), 1DQCN, 2DQCN. (Fig. S8-Fig. S15)
- 10.High Resolution Mass Spectra of 1DQCN and 2DQCN. (Fig. S16-Fig. S17)

11.Reference

Fig. S1 The geometry-optimized molecular structure plots (optimized by using density functional theory calculation at the DFT/B3LYP/6-31G(d) level).

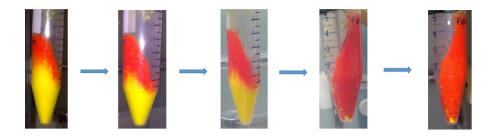


Fig. S2 The whole transformation process of 2DQCN from yellow to red in the

centrifuge tube.

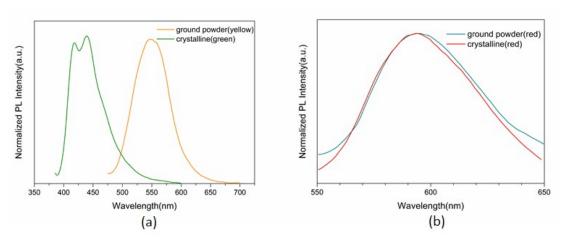
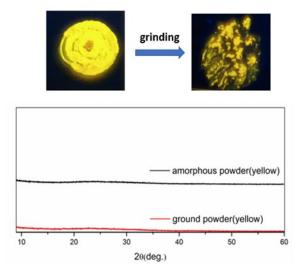



Fig. S3 Fluorescence spectra of (a) 1DQCN and (b) 2DQCN before and after grinding.

Fig. S4 The fluorescence images and PXRD patterns of **2DQCN** amorphous state before and after grinding.

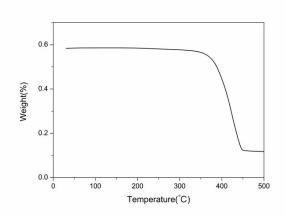
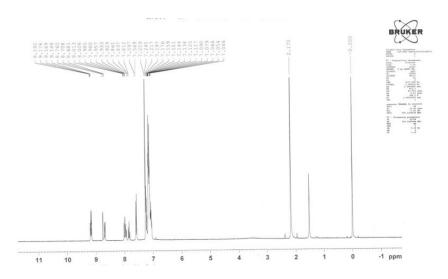



Fig. S5 TGA thermogram of 2DQCN recorded under N_2 atmosphere at a heating rate of 10 °C/min.

Fig. S6 ¹H NMR spectra of **2DQCN** in chloroform-d after annealing at 260 $^{\circ}$ C for more than ten minutes.

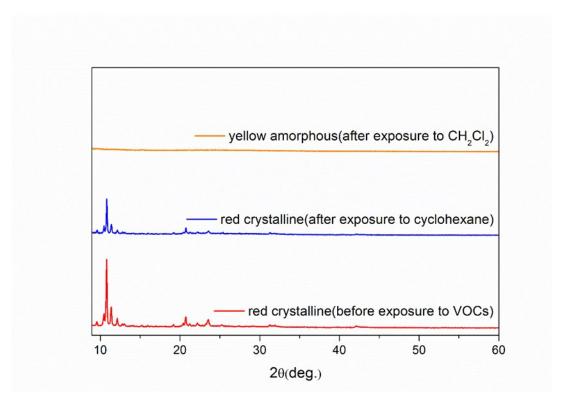


Fig. S7 The XRD patterns of 2DQCN crystalline films before and after exposure to CH_2Cl_2 and cyclohexane solvents.

8. Synthesis

Scheme 2 Synthetic Routes to 1DQCN and 2DQCN.

1DQCN and **2DQCN** are efficiently prepared by a facile two-step approach and the synthetic routes to the two compounds are depicted in **Scheme 2**. 4-(1,2,2-triphenylvinyl)phenylboronic acid **(1)** was prepared by lithiation of 1-(2-(4-bromophenyl)-1,2-diphenylvinyl)benzene, followed by treatment with trimethyl borate and hydrolysis catalyzed by acid according to ref [1]. 1,2-bis(4-bromophenyl)ethane-1,2-dione **(2)**, and 2,7-dibromophenanthrene-9,10-dione **(3)** were prepared according to published methods, [2], [3] and [4]. The other typical procedures for their syntheses are shown below.

1,2-bis(4'-(1,2,2-triphenylvinyl)-[1,1'-biphenyl]-4-yl)ethane-1,2-dione (4) and 2,7-bis(4-(1,2,2-triphenylvinyl)phenyl)phenanthrene-9,10-dione (5): Into a stirred mixture of 0.736 g (2 mmol) of (2) (0.732 g (2 mmol) of (3)), 1.504 g (4 mmol) of (1), and 12 mL of 2 M Na₂CO₃ solution in 30 mL THF was added 0.02 g of Pd(PPh₃)₄ under nitrogen. The mixture was heated to 80°C for 12 h. After being cooled to room temperature, the solution was extracted with 50 mL of CH₂Cl₂ twice, washed with water, and dried over Na₂SO₄. After filtration and solvent evaporation under reduced pressure, the product was purified by silica-gel column chromatography using hexane/dichloromethane as eluent. The pale yellow solid of (4) and orange solid of (5) were obtained in 63.3% yield (1.10 g) and 66.2% yield (1.15g), respectively. (4) ¹H NMR (400 MHz, CDCl₃), δ (TMS, ppm): 7.99-8.01 (d, 4H), 7.67-7.69 (d, 4H), 7.37-7.39 (d, 4H), 7.02-7.13 (m, 34H). ¹³C NMR (100 MHz, CDCl₃), δ (TMS, ppm): 147.10, 144.43, 143.57, 143.55, 143.51, 141.76, 140.16, 137.10, 132.07, 131.61, 131.40, 131.35, 131.33, 130.50, 127.86, 127.81, 127.70, 127.34, 126.71, 126.64, 126.61, 126.56. (5) ¹H NMR (400 MHz, CDCl₃), δ (TMS, ppm): 8.19-8.22 (m, 4H), 8.15 (s, 2H), 8.07-8.09 (d, 2H), 7.70-7.74 (t, 2H), 7.61-7.63 (d, 2H), 7.45-7.50 (m, 6H), 7.04-7.19 (m, 26H). ¹³C NMR (100 MHz, CDCl₃), δ (TMS, ppm): 148.34, 144.97, 143.53, 143.49, 143.46, 141.98, 140.04, 137.05, 136.21, 135.92, 135.83, 132.21, 131.40, 131.39, 131.33, 131.25, 131.22, 130.55, 129.68, 129.64, 127.98, 127.93, 127.86, 127.74, 126.77, 126.72, 126.69, 126.54, 123.98, 122.40.

5,6-bis(4'-(1,2,2-triphenylvinyl)-[1,1'-biphenyl]-4-yl)pyrazine-2,3-dicarbonitrile

(1DQCN) 6,11-bis(4-(1,2,2-triphenylvinyl)phenyl)dibenzo[f,h]quinoxaline-2,3dicarbonitrile (2DQCN): A suspension of (4) (0.871 g, 1 mmol) (0.869 g, 1 mmol of (5)) and 2,3-diaminomaleonitrile (0.130 g, 1.2 mmol) in acetic acid (10 ml) was heated to reflux for 6h, during which time a yellow precipitate of 1DQCN (a red precipitate of 2DQCN) formed. After filtration, the resulting solid was purified by silica-gel column chromatography using hexane/dichloromethane as eluent. 1DQCN was formed in a 95.3% yield (0.899 g) and 2DQCN was formed in a 93.6% yield (0.880 g). **1DQCN** ¹H NMR (400 MHz, CDCl₃), δ (TMS, ppm): 7.61-7.63 (d, 4H), 7.55-7.57 (d, 4H), 7.35-7.38 (d, 4H), 7.02-7.13 (m, 34H). ¹³C NMR (100 MHz, CDCl₃), δ (TMS, ppm): 144.07, 143.63, 143.57, 143.54, 143.49, 141.66, 140.24, 137.05, 133.92, 132.03, 131.38, 131.36, 131.31, 130.29, 129.50, 127.82, 127.77, 127.69, 127.18, 126.62, 126.59, 126.25. HRMS (MALDI-TOF): m/z 942.299 (M⁺, calcd 942.372). Anal. Calcd For C₇₀H₄₆N₄: C, 89.14; H, 4.92; N, 5.94. Found: C, 88.96; H, 5.08; N, 5.75. **2DQCN** ¹H NMR (400 MHz, CDCl₃), δ (TMS, ppm): 9.15-9.19 (q, 4H), 8.76 (s, 2H), 8.68-8.70 (d, 2H), 7.93-8.01 (q, 4H), 7.81-7.86 (t, 2H), 7.57-7.60 (d, 4H), 7.05-7.24 (m, 26H). ¹³C NMR (100 MHz, CDCl₃), δ (TMS, ppm): 145.17, 144.57, 143.61, 143.54, 142.78, 141.90, 140.15, 137.54, 133.54, 133.24, 132.70, 132.27, 131.41, 131.33, 130.28, 129.01, 127.91, 127.84, 127.73, 127.61, 127.57, 127.19, 126.83, 126.73, 126.69, 126.07, 123.25, 121.25, 113.91, 113.87. HRMS: m/z 941.61 ([M+H]+, calcd 941.36). Anal. Calcd For C₇₀H₄₄N₄: C, 89.33; H, 4.71.; N, 5.95. Found: C, 89.02; H, 4.94; N, 5.80.

9. NMR Spectra of Compound (4), (5), 1DQCN, 2DQCN.

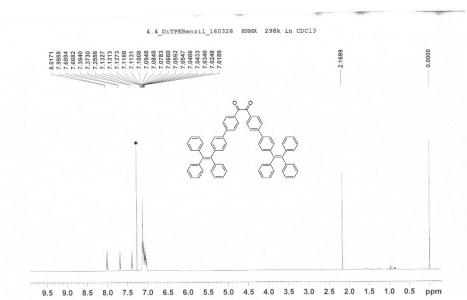


Fig. S8 ¹H NMR spectrum of (4) in chloroform-d. The solvent peaks are marked with asterisks.

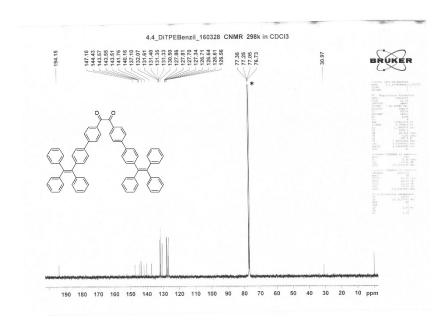


Fig. S9 ¹³C NMR spectrum of (4) in chloroform-d. The solvent peaks are marked with asterisks.

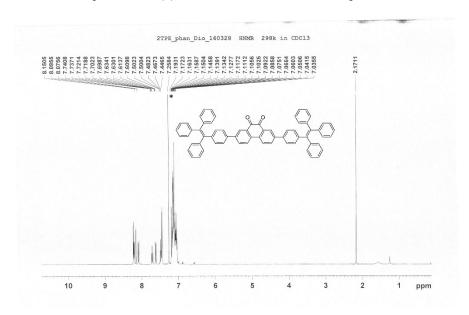


Fig. S10 ¹H NMR spectrum of (5) in chloroform-d. The solvent peaks are marked with asterisks.

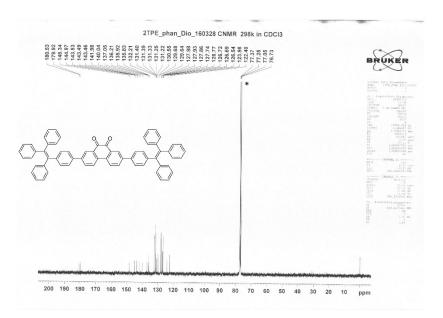


Fig. S11 ¹³C NMR spectrum of (5) in chloroform-d. The solvent peaks are marked with asterisks.

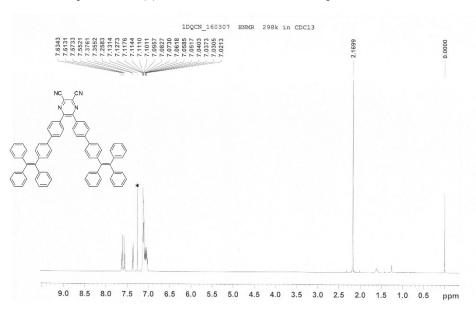


Fig. S12 ¹H NMR spectrum of 1DQCN in chloroform-d. The solvent peaks are marked with asterisks.

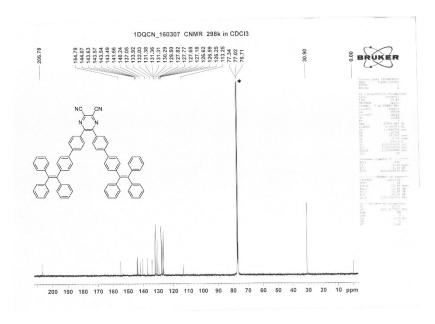
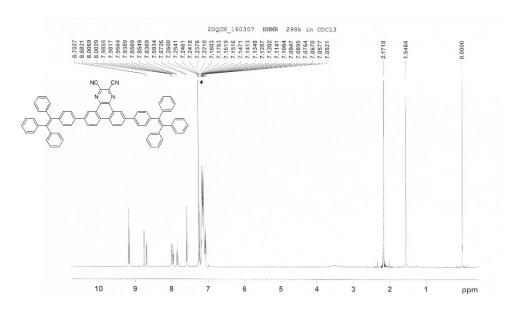



Fig. S13 13 C NMR spectrum of 1DQCN in chloroform-d. The solvent peaks are marked with asterisks.

Fig. S14 ¹H NMR spectrum of **2DQCN** in chloroform-*d*. The solvent peaks are marked with asterisks.

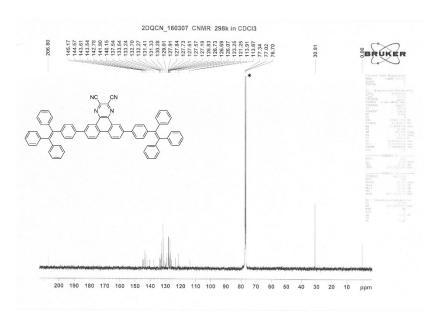


Fig. S15 13 C NMR spectrum of 2DQCN in chloroform-d. The solvent peaks are marked with asterisks.

10. High Resolution Mass Spectra of 1DQCN and 2DQCN.

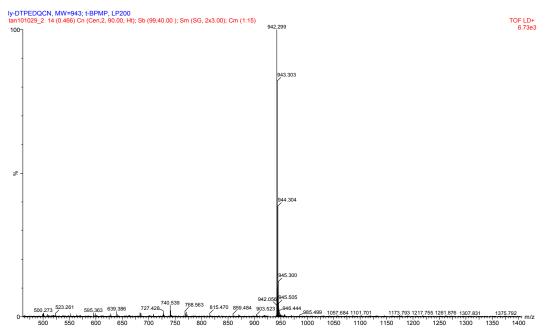


Fig. S16 High resolution mass spectrum of 1DQCN.

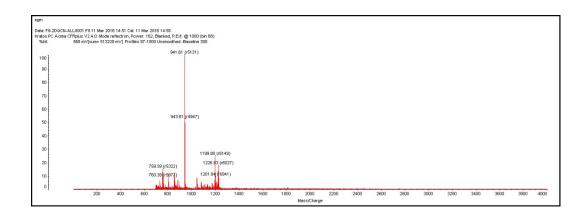


Fig. S17 High resolution mass spectrum of 2DQCN.

11. Reference

- 1. W. Z. Yuan, P. Lu, S. Chen, J. W. Lam, Z. Wang, Y. Liu, H. S. Kwok, Y. Ma and B. Z. Tang, Advanced materials, 2010, 22, 2159-2163.
- 2. U. Maeorg, U. Soomets, A. Perkson, K. Linask and G. Raidaru, Mendeleev Communications, 1994, 4, 99-100.
- 3. J. Zhang, X. Wang, Q. Su, L. Zhi, A. Thomas, X. Feng, D. S. Su, R. Schlögl and K. Müllen, Journal of the American Chemical Society, 2009, 131, 11296-11297.
- 4. M. Hanif, P. Lu, M. Li, Y. Zheng, Z. Xie, Y. Ma, D. Li and J. Li, Polymer International, 2007, 56, 1507-1513.