Electronic Supplementary Information

A highly selective fluorescent nanoprobe based on AIE and ESIPT for imaging hydrogen sulfide in live cells and in vivo

Peisheng Zhang,^{ab} Xuezheng Nie,^a Meng Gao,^a Fang Zeng,^{*a} Anjun Qin^a, Shuizhu Wu^{*a} and Ben Zhong Tang^a

Scheme S1. Synthetic route of the probe (TPE-3).

Scheme S2. Possible reaction mechanism of TPE-3 with H₂S

Figure S1. ¹H-NMR spectra (CDCl₃) of TPE-1.

Figure S2. (A) ¹H-NMR spectrum (in d_6 -DMSO) and (B) mass spectrum of **TPE-2** (m/z 524.7 [M+CH₃OH]⁺).

Figure S3. (A) ¹H-NMR spectra (CDCl₃), (B) ¹³C-NMR spectra (CDCl₃) and (B) mass spectrum of **TPE-3** (m/z 659.0 [M+H]⁺).

Figure S4. The zeta potential of the self-assembled nanoprobe.

Figure S5. (A) Fluorescence emission spectra of TPE-2 in water/DMSO mixtures with varied water content. (B) Plot of I/I_0 at 550 nm versus water content (f_w), where I_0 is the fluorescence intensity in pure DMSO solution. $\lambda_{ex} = 452$ nm

Figure S6. Time-dependent absorption spectrum of the nanoprobe (0.01 mg/mL) in the presence of H₂S (200 μ M) in PBS buffer (10 mM, pH=7.4); The inset displays the photographs under ambient light.

Figure S7. Plot of fluorescence intensity at 550 nm (I_{550}) versus H₂S concentrations.

Determination of the detection limit:

First the calibration curve was obtained from the plot of fluorescence intensity at 550 nm (I_{550}) versus H₂S concentrations. The regression curve equation was then obtained for the lower concentration part.

The detection limit = $3 \times S.D. / k$

where k is the slope of the curve equation, and S.D. represents the standard deviation for the fluorescence intensity at 550 nm (I_{550}) of nanoprobe in the absence of H_2S .

 $I_{550} = 18.94682 + 1.0809 \times [H_2S](R^2 = 0.9938)$

 $LOD = 3 \times 0.0323 / 1.0809 = 0.09 \ \mu M$

Figure S8. The effect of pH on the fluorescence intensity at 550 nm (I_{550}) of the nanoprobe (0.01 mg/mL) in the absence or presence of H₂S (200 μ M). $\lambda_{ex} = 452$ nm.

Figure S9. The effect of pH on the size of the self-assembled nanoprobe.

Figure S10. (A) Possible reaction mechanism of TPE-3 with H_2S ; (B) Mass spectra of TPE-3 upon reaction with H_2S . The signals at m/z 531.8 are $[(TPE-2)+K]^+$, and the signals at m/z 563.1 are $[(TPE-2)+K+MeOH]^+$.

Figure S11. Typical HPLC chromatogram for the TPE-3 (A), TPE-3 incubated with H_2S for 30 min (B) and TPE-2 (C). Peaks in the chromatograms were detected by monitoring the absorption at both 365 nm and 450 nm. The mobile phase was 50/50 methanol/acetonitrile at a flow rate of 1.0 mL/min.

TPE-3 and the reaction product (TPE-2) give rise to a peak at 3.30 and 1.79 min in HPLC chromatogram, respectively. For the TPE-3, upon treatment with H_2S , the peak intensity at 3.30 min decreases and a new strong peak emerges at 1.79 min which well matches that for TPE-2.

Figure S12. Viability for HeLa cells treated with the nanoprobe of varied concentrations for 24 h.