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Fig. S1. TEM images of a) diffused molecules through dialysis membrane and b) N-CDs 

prepared after 10 h of hydrothermal reaction. The average and standard deviation diameter of 

N-CDs is based on a count of 50 nanoparticles. 
 

 N-CDs were obtained after hydrothermal synthesis of melamine with D-glucose at 160 

ºC for different times. All syntheses result in a brownish dispersion together with a deposition 

of black carbonaceous material. The amount of calcined material depends on the reaction 

time. Short reaction times yield almost transparent dispersions, while long reactions yield 

mainly carbonized materials. Since short times are not enough to build-up N-CDs and long 

reactions result in highly carbonaceous materials, a synthesis time of 4 h was selected as the 

most suitable for the development of N-CDs. 

 

 

Fig. S2. N-CDs were obtained after filtration through a 0.45 µm pore-size PVDF filter membrane 

and further dialysis of the remaining fine brownish stable dispersion for 6 days. a) Photographs 

showing the fine brownish dispersion into the dialysis bag suspended in distilled water at the 

beginning (left) and at the end (right) of the dialysis process. Note the large amount of diffused 

molecules through the membrane. b) From left to right: photographs under natural (top) and 

365 nm UV light (bottom) for the whole hydrothermal reaction, the fine brownish stable 

dispersion after removing the carbonaceous material, after filtration through 0.45 µm pore-size 

PVDF filter and after dialysis. Note that the luminescence intensity is slightly decreased after 

the removal of diffused organic fluorophores.  
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Fig. S3. a) PXRD pattern; b) XPS survey spectra and c) elemental mapping of synthesized N-CDs 

showing evenly distributed C, N and O atoms. 
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Fig. S4. Photoluminescence emission spectra of a) glucose, melamine, and glucose+melamine 

(N-CDs) suspensions after hydrothermal treatment at 160 °C for 4 h; b) water-dispersed N-CDs 

before and after degassing to elucidate fluorescence/phosphorescence contribution; c) 

aqueous N-CDs suspensions for different excitation wavelengths and d) emission spectra of 

aqueous N-CDs suspensions having different concentration when excited at 365 nm. Note that 

if not stated, a N-CD concentration of 0.5 mg mL-1 has been excited under 365 nm UV light. 

 

 

Fig. S5. a) Representative transmission electron microscopy (TEM) and b) length-distribution of 

CNCs (based on count of 80 particles). 
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Fig. S6. Photographs of aqueous C-dot dispersions under a) natural and b) 365 nm UV light for 

aqueous N-CD/CNC dispersions having a N-CDs concentration of 0, 0.1, 0.2, 0.5, 1 and 2 wt% 

from left to right; c) photographs of chiral nematic films showing their luminescent properties 

when exposed to 365 nm UV light (up) and their iridescence under natural light (bottom). 

 

 

Fig. S7. FE-SEM micrographs viewed along fracture cross-sections of the N-CD/CNC composite 

films showing small differences on their twisted layers upon N-CD addition: a) 0; b) 0.1; c) 0.2; 

d) 0.5; e) 1 and f) 2 wt%. Note that chiral nematic order is maintained for all the compositions. 
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Fig. S8. a) FTIR spectra and d) thermogravimetric analysis of N-CD/CNCs films heated at 10 °C 

min-1 under N2 atmosphere. Note that upon N-CD loading the thermal stability of films is 

notably increased. 

 

FTIR technique has been conducted to confirm the presence of N-CDs within the CNC 

matrix. Pure CNCs show (Fig. S7a) the characteristic spectrum of cellulose, having a broad band 

in the 3650–3200 cm-1 region and another band centered at 2902 cm-1, corresponding to the 

O–H stretching vibration and the asymmetric and symmetric stretching of methyl and 

methylene C–H groups, respectively. Moreover, the 1160 cm-1 band is assigned as C–O–C 

bending and 897 cm-1 band is due to the C–O–C asymmetric stretching at the β glycosidic 

linkage. On the other hand, N-CD/CNC 2 wt% film displays the characteristic cellulose bands 

together with the 1618 and 1030 cm-1 bands arising from N-CDs, confirming their presence 

within the composite films. 

TGA results (Fig. S7b) show that the thermal stability of composite films improves upon 

N-CD addition. Indeed, the onset of the thermodegradation process (taken as the temperature 

in which the first 10% of the mass is lost) takes place 22.3 ºC higher with the addition of 2 wt% 

N-CDs. The depolymerization, dehydration and decomposition of cellulose gyclosyl units may 

be delayed due to nitrogen release from the N-CDs upon heating, inhibiting the overall 

thermodegradation process. 
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Fig. S9. PL spectra of CNC composite films having up to 20 wt% of unpurified N-

CDs+fluorophores. A continuous increase in luminescence is observed. 
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