Electronic Supplementary Information (ESI)

## Graphene encapsulated Fe<sub>3</sub>O<sub>4</sub> nanorods to assemble a mesoporous hybrid composite as high-performance lithium-ion battery anode material

Wei Huang,<sup>ab</sup> Xinxin Xiao,<sup>a</sup> Christian Engelbrekt,<sup>b</sup> Minwei Zhang,<sup>b</sup> Shuo Li,<sup>a</sup> Jens Ulstrup,<sup>b</sup> Lijie Ci,<sup>a</sup> Jinkui Feng,<sup>a</sup> Pengchao Si,<sup>\*a</sup> Qijin Chi<sup>\*b</sup>

<sup>a</sup> Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China. E-mail address: pcsi@sdu.edu.cn (P.S.), Tel: +86 531 88399858, Fax: +86 531 88395011.

<sup>b</sup> Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark. E-mail address: cq@kemi.dtu.dk (Q.C.), Tel: +45 4525 2032, Fax: +45 4588 3136.



Fig. S1 The XRD pattern (a) and SEM image (b) of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> obtained via protocol without GO.



Fig. S2 Comparison of FT-IR spectra of the GO (black curve) and  $Fe_3O_4/rGO$  (red curve).



Fig. S3 SEM image of the commercial  $Fe_3O_4$  powder.

| Materials                                         | Specific surface area (m <sup>2</sup> g <sup>-1</sup> ) | References |
|---------------------------------------------------|---------------------------------------------------------|------------|
| Fe <sub>3</sub> O <sub>4</sub> /rGO               | 152                                                     | This work  |
| Conventional Fe <sub>3</sub> O <sub>4</sub>       | 2                                                       | This work  |
| powder                                            |                                                         |            |
| Fe <sub>3</sub> O <sub>4</sub> /GNSs              | 52.84                                                   | 1          |
| Fe <sub>3</sub> O <sub>4</sub> @GS/GF             | 114.5                                                   | 2          |
| <b>3D</b> Graphene/Fe <sub>3</sub> O <sub>4</sub> | 95.22                                                   | 3          |
| Fe <sub>3</sub> O <sub>4</sub> NCs–GAs            | 118                                                     | 4          |
| Fe <sub>3</sub> O <sub>4</sub> decorated Graphene | 130                                                     | 5          |
| ball                                              |                                                         |            |
| Fe <sub>3</sub> O <sub>4</sub> -NS/G composites   | 121                                                     | 6          |
| Hollow Fe <sub>3</sub> O <sub>4</sub> /Graphene   | 132                                                     | 7          |
| Fe <sub>3</sub> O <sub>4</sub> /GNS               | 53                                                      | 8          |
| Fe <sub>3</sub> O <sub>4</sub> /C nanospindles    | 35.1                                                    | 9          |
| mesoporous Fe <sub>3</sub> O <sub>4</sub>         | 133                                                     | 10         |
| nanocages                                         |                                                         |            |
| Fe <sub>3</sub> O <sub>4</sub> /Helical Carbon    | 126                                                     | 11         |
| Nanofibers                                        |                                                         |            |
| Fe <sub>3</sub> O <sub>4</sub>                    | 35.04                                                   | 12         |
| microspheres/Graphene                             |                                                         |            |
| Fe <sub>3</sub> O <sub>4</sub> Hollow Spheres     | 88.06                                                   | 13         |
| Fe <sub>3</sub> O <sub>4</sub> –RGO               | 81.67                                                   | 14         |
| Fe <sub>3</sub> O <sub>4</sub> /GS                | 83.9                                                    | 15         |
| Fe <sub>3</sub> O <sub>4</sub>                    | 92.2                                                    | 16         |
| Nanoflake/Graphene                                |                                                         |            |
| Fe <sub>3</sub> O <sub>4</sub> nanorods/Graphene  | 86                                                      | 17         |
| Fe <sub>3</sub> O <sub>4</sub> @Polypyrrole       | 69.63                                                   | 18         |
| Nanocages                                         |                                                         |            |

Table S1 Comparison of the BET specific surface areas of mesoporous  $Fe_3O_4/rGO$  composites with other  $Fe_3O_4$  based composites.

**Note:** GNSs: graphene nanosheets; GS/GF: encapsulated with graphene; NCs: nanoclusters; GAs: graphene aerogels; NS: nanospheres.



Fig. S4 Pore size distribution of  $Fe_3O_4/rGO$  samples; inset: pore size distribution of bare  $Fe_3O_4$  sample.



**Fig. S5** Cyclic voltammograms for the first to fifth cycle of the bare  $Fe_3O_4$  sample in a voltage range of 0.01-3.0 V at 0.1 mV s<sup>-1</sup>.



Fig. S6 The cyclic performance of pure rGO anode at 100 mA  $g^{-1}$ .



Fig. S7 The XRD patterns of before and after cycles based on  $Fe_3O_4/rGO$  electrode material.



Fig. S8 SEM images of Fe<sub>3</sub>O<sub>4</sub>/rGO (a) and bare Fe<sub>3</sub>O<sub>4</sub> (b) after 100 cycles at 100 mA g<sup>-1</sup>.

## **Supporting references**

- 1 X. Li, X. Huang, D. Liu, X. Wang, S. Song, L. Zhou, H. Zhang, *J. Phys. Chem. C*, 2011, **115**, 21567-21573.
- 2 W. Wei, S. Yang, H. Zhou, I. Lieberwirth, X. Feng, K. Mullen, *Adv. Mater.*, 2013, **25**, 2909-2914.
- 3 W. Chen, S. Li, C. Chen, L. Yan, *Adv. Mater.*, 2011, **23**, 5679-5683.
- 4 L. Fan, B. Li, D.W. Rooney, N. Zhang, K. Sun, *Chem. Commun.*, 2015, **51**, 1597-1600.
- 5 S.H. Choi, Y.C. Kang, *Carbon*, 2014, **79**, 58-66.
- 6 Y. Dong, K.C. Yung, R. Ma, X. Yang, Y.S. Chui, J.M. Lee, J.A. Zapien, *Carbon*, 2015, **86**, 310-317.
- 7 D. Chen, G. Ji, Y. Ma, J.Y. Lee, J. Lu, ACS Appl. Mater. Inter., 2011, **3**, 3078-3083.
- 8 G. Zhou, D.W. Wang, F. Li, L. Zhang, N. Li, Z.S. Wu, L. Wen, G.Q. Lu, H.M. Cheng, *Chem. Mater.*, 2010, **22**, 5306-5313.
- 9 W.M. Zhang, X.L. Wu, J.S. Hu, Y.G. Guo, L.J. Wan, *Adv. Funct. Mater.*, 2008, **18**, 3941-3946.
- 10 T. Xia, X. Xu, J. Wang, C. Xu, F. Meng, Z. Shi, J. Lian, J.M. Bassat, *Electrochim. Acta*, 2015, **160**, 114-122.
- S. Ren, R. Prakash, D. Wang, V.S.K. Chakravadhanula, M. Fichtner, *ChemSusChem*, 2012, 5, 1397-1400.
- 12 Y. Jiang, Z.J. Jiang, L. Yang, S. Cheng, M. Liu, J. Mater. Chem. A, 2015, **3**, 11847-11856.
- 13 F.X. Ma, H. Hu, H.B. Wu, C.Y. Xu, Z. Xu, L. Zhen, X.W. Lou, *Adv. Mater.*, 2015, **27**, 4097-4101.
- 14 S. Bhuvaneswari, P.M. Pratheeksha, S. Anandan, D. Rangappa, R. Gopalan, T.N. Rao, *Phys. Chem. Chem. Phys.*, 2014, **16**, 5284-5294.
- 15 X. Meng, Y. Xu, X. Sun, J. Wang, L. Xiong, X. Du, S. Mao, *J. Mater. Chem. A*, 2015, **3**, 12938-12946.
- 16 B. Zhao, Y. Zheng, F. Ye, X. Deng, X. Xu, M. Liu, Z. Shao, *ACS Appl. Mater. Inter.*, 2015, **7**, 14446-14455.
- 17 Q. Zhou, Z. Zhao, Z. Wang, Y. Dong, X. Wang, Y. Gogotsi, J. Qiu, *Nanoscale*, 2014, **6**, 2286-2291.
- 18 J. Liu, X. Xu, R. Hu, L. Yang, M. Zhu, Adv. Eng. Mater., 2016, 1600256.