Heteroleptic Ru(II) cyclometalated complexes derived from benzimidazolephenyl carbene ligands for dye-sensitized solar cells: experimental and theoretical approach

Tejaswi Jella,^{a,b} Malladi Srikanth,^c Yarasi Soujanya,^c Surya Prakash Singh^{a,b} Lingamallu Giribabu^{a,b*} Ashraful Islam, ^{d*} Liyuan Han, ^d Idriss Bedja,^e Ravindra Kumar Gupta^e

^{a,b}Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, and CSIR-Network Institutes for Solar Energy (CSIR-NISE), Tarnaka, and CSIR-Network Institutes for Solar Energy (CSIR-NISE), Hyderabad-500007, (Telangana), India .Email: giribabu@iict.res.in. Phone: +91-40-27191724, Fax: +91-40-27160921 and Academy of Scientific and Innovative Research (AcSIR), New Delhi, India. ^cMolecular Modelling Group, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, (Telangana),

^dPhotovoltaic Materials Unit, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.

eCRC, Optometry Department, College of Applied Medical Sciences, King Saudi University, riyadh 11433, Saudi Arabia

	Table of Contents		
Fig. S1	¹ H NMR spectrum of N-(2-nitrophenyl)-3,5-bis(trifluoromethyl) benzamide (1) in $CDCl_3$.	S1	
Fig. S2	ESI-MS spectrum of N-(2-nitrophenyl)-3,5-bis(trifluoromethyl) benzamide (1)	S2	
Fig. S3	¹ H NMR spectrum of 2-(3,5-bis(trifluoromethyl)phenyl)-1H- benzo[d]imidazole (2) in CDCl ₃ .	S2	
Fig. S4	ESI-Mass spectrum of 2-(3,5-bis(trifluoromethyl)phenyl)-1H- benzo[d]imidazole (2).	S3	
Fig. S5	¹ H NMR spectrum of $2-(3,5-bis(trifluoromethyl)phenyl)-1H-benzo[d]imidazole (L1) in CDCl3.$	S4	
Fig. S6	ESI-Mass sepectrum of 2-(3,5-bis(trifluoromethyl)phenyl)-1H- benzo[d]imidazole (L1).	S4	
Fig. S7	¹ H NMR spectrum of 10-hexyl-penothiazine-3-carboxaldehyde (3) in CDCl ₃ .	S5	
Fig. S8	ESI-Mass spectrum of 10-hexyl-penothiazine-3-carboxaldehyde (3).	S5	
Fig. S9	¹ H NMR spectrum of 3-(1H-benzo[d]imidazol-2yl)-10-hexyl-10H- phenothiazine (4) in CDCl ₃ .		
Fig. S10	ESI-Mass spectrum of 3-(1H-benzo[d]imidazol-2yl)-10-hexyl-10H- phenothiazine (4).	S6	
Fig. S11	¹ H NMR spectrum of 3-(1H-benzo[d]imidazol-2yl)-10-hexyl-10H- phenothiazine (L2) in CDCl ₃ .	S7	
Fig. S12	ESI-Mass spectrum of (L2).	S7	
Fig. S13	¹ H NMR spectrum of TC-1 in CD ₃ OD.	S8	
Fig. S14	ESI-Mass spectrum of TC-1.	S8	
Fig. S15	¹ H NMR spectrum of TC-2 in DMSO- d_6 .	S9	
Fig. S16	ESI-Mass spectrum of TC-2.	S9	
Fig. S17	¹ H NMR spectrum of TC-3 in DMSO- d_6 .	S9	

Fig. S18	ESI-Mass spectrum of TC-3.	S10
Fig. S19	Absorption spectra of sensitizers adsorbed onto a 6 μ m thick TiO ₂ .	S11
Fig. S20	Differential pulse voltammogramme of complexes TC-1, TC-2 & TC-3	S11
Fig. S21	Figure 6: TG/DTG curves of all three heteroleptic complexes with a heating rate of 10 °C min ⁻¹ under nitrogen atmosphere.	S12
Fig. S22	Optimised Molecular structures of ruthenium complexes.	
Table S1	Geometric parameters (in Å and degrees) of Ru complexes at B3LYP/def2- SVP:def2-TZVP-ecp in methanol (Wiberg bond indices shown in parenthesis).	
Table S2	Calculated absorption spectra wavelengths (nm), oscillator strengths (<i>f</i>), at TD-CAM-B3LYP/def2-SVP:def2-TZVP-ecp on B3LYP/def2-SVP:def2-TZVP-ecp optimized geometries in methanol solvent using PCM solvation. (the major transition configurations (CI) is given for transitions > 5%).	
Table S3	Calculated first three triplet excitation energies in eV, using TD-CAM- B3LYP/def2-SVP:def2-TZVP-ecp on B3LYP/def2-SVP:def2-TZVP-ecp optimized geometries in methanol solvent using PCM solvation.	
Table S4	The dominant natural transition orbital pairs for the selected excited singlet states and eigenvalues (λ).	

Fig. S1: ¹H NMR spectrum of N-(2-nitrophenyl)-3,5-bis(trifluoromethyl)benzamide (1) in CDCl₃.

Fig. S2: ESI-MS spectrum of N-(2-nitrophenyl)-3,5-bis(trifluoromethyl)benzamide (1)

Fig. S3: ¹H NMR spectrum of 2-(3,5-bis(trifluoromethyl)phenyl)-1H-benzo[d]imidazole (2) in CDCl₃.

Fig. S4: ESI-Mass spectrum of 2-(3,5-bis(trifluoromethyl)phenyl)-1H-benzo[d]imidazole (2).

Fig. S5: ¹H NMR spectrum of 2-(3,5-bis(trifluoromethyl)phenyl)-1H-benzo[d]imidazole (L1) in CDCl₃.

Fig. S6: ESI-Mass sepectrum of 2-(3,5-bis(trifluoromethyl)phenyl)-1H-benzo[d]imidazole (L1).

Fig. S7: ¹H NMR spectrum of 10-hexyl-penothiazine-3-carboxaldehyde (3) in CDCl₃.

Fig. S8: ESI-Mass spectrum of 10-hexyl-penothiazine-3-carboxaldehyde (3).

Fig. S9: ¹H NMR spectrum of **3-(1H-benzo[d]imidazol-2yl)-10-hexyl-10H-phenothiazine** (4) in CDCl₃.

Fig. S10: ESI-Mass spectrum of **3-(1H-benzo[d]imidazol-2yl)-10-hexyl-10Hphenothiazine** (4).

Fig. S11: ¹H NMR spectrum of **3-(1H-benzo[d]imidazol-2yl)-10-hexyl-10H-phenothiazine** (L2) in CDCl₃.

Fig. S12: ESI-Mass spectrum of (L2).

Fig. S13: ¹H NMR spectrum of TC-1 in CD₃OD.

Fig. S14: ESI-Mass spectrum of TC-1.

Fig. S15: ¹H NMR spectrum of TC-2 in DMSO-d₆.

Fig. S16: ESI-Mass spectrum of TC-2.

Fig. S17: ¹H NMR spectrum of TC-3 in DMSO-d₆.

Fig. S18: ESI-Mass spectrum of TC-3.

Fig. S19: Absorption spectra of sensitizers adsorbed onto a 6 μ m thick TiO₂.

Fig. S20: Differential pulse voltammogramme of complexes TC-1, TC-2 & TC-3

Figure S21: TG/DTG curves of all three heteroleptic complexes with a heating rate of 10 °C min⁻¹ under nitrogen atmosphere.

Figure 22. Optimised Molecular structures of ruthenium complexes.

Table S1. Geometric parameters (in Å and degrees) of Ru complexes at B3LYP/def2-SVP:def2-TZVP-ecp in methanol (Wiberg bond indices shown in parenthesis).

Geometric parameters	TC-1 ¹⁺	TC-2 ¹⁻ TC-3 ¹⁺			
Bond lengths (Å)					
$Ru-N_1$ (NHC)	2.108 (0.53)	2.109 (0.53)	2.114 (0.53)		
Ru-N ₂ (Bpy/NCS)	2.079 (0.56)	2.056 (0.63)	2.087 (0.56)		
Ru-N ₃ (trans Bpy/NCS)	2.144 (0.47)	2.126 (0.56)	2.163 (0.45)		
Ru-N ₄ (Bpy)	2.081 (0.57)	2.053 (0.62)	2.058 (0.59)		
Ru-N ₅ (cis Bpy)	2.069 (0.57)	2.031 (0.65)	2.055 (0.59)		
$Ru-C_6$ (NHC)	2.117 (0.78)	2.101 (0.82)	2.064 (0.81)		
Bond angle (°)					
N_2 -Ru- N_3	77.64	88.97	77.10		
N ₃ -Ru-N ₄	78.54	79.43	78.97		
N ₁ -Ru-C ₆	78.82	79.05	78.43		

Table S2. Calculated absorption spectra wavelengths (nm), oscillator strengths (*f*), at TD-CAM-B3LYP/def2-SVP:def2-TZVP-ecp on B3LYP/def2-SVP:def2-TZVP-ecp optimized geometries in methanol solvent using PCM solvation. (the major transition configurations (CI) is given for transitions > 5%)

Molecule	State	eV/nm	Major contribution MOs		
TC-1 ¹⁺ +	S5	2.5292/490	H-2→LUMO (45%), H-1→L+1 (29%), H-2→L+1 (7%), H-		
PF_6^-		(0.1982)	1→LUMO (8%), HOMO→LUMO (5%)		
	S8	3.1865/389	HOMO \rightarrow L+2 (53%), HOMO \rightarrow L+4 (21%), HOMO \rightarrow L+5		
		(0.0645)	(12%)		
TC-2 ²⁻	S1	1.8909/656	H-2→LUMO (28%), HOMO→LUMO (60%)		
		(0.0224)			
	S3	2.3797/521	H-2→LUMO (59%), HOMO→LUMO (22%),		
		(0.1657)	HOMO→L+2 (10%)		
	S5	2.8256/438	H-1→L+1 (28%), HOMO→L+2 (55%)		
		(0.1098)			
	S25	4.1681/297	H-9→L+1 (10%), H-8→LUMO (16%), H-5→L+1 (11%),		
		(0.2735)	H-3→L+1 (30%),H-12→LUMO (5%), H-6→L+1 (6%)		
TC-2 ²⁻⁺	S3	2.4269/511	H-2→LUMO (33%), H-1→LUMO (40%),		
$2TMA^{+}$		(0.1519)	HOMO→LUMO (10%)		
	S8	3.1131/398	H-1→L+2 (66%), H-2→L+2 (9%), H-1→LUMO (7%),		
		(0.1016)	HOMO→L+2 (6%)		
TC-1 ¹⁺ +	S1	1.9486/636	H-1→LUMO (52%), HOMO→LUMO (29%), H-		
PF_6^-		(0.0107)	2→LUMO (8%)		
	S3	2.2361/554	H-3→LUMO (40%), H-2→L+1 (30%), HOMO→LUMO		
		(0.0164)	(10%), H-2→LUMO (8%)		
	S5	2.3767/521	H-3→LUMO (29%), H-2→L+1 (43%), H-1→LUMO (7%),		
		(0.1946)	HOMO→LUMO (5%)		

Table S3. Calculated first three triplet excitation energies in eV, using TD-CAM-B3LYP/def2-SVP:def2-TZVP-ecp on B3LYP/def2-SVP:def2-TZVP-ecp optimized geometries in methanol solvent using PCM solvation.

Molecule	CAM-B3LYP	Major contribution MOs		
	Triplet (eV)/nm			
TC-1 ¹⁺	1.8994/653	HOMO→LUMO (27%), HOMO→L+1 (57%)		
	1.9652/631	H-2→L+1 (26%), H-1→L+1 (29%),		
		HOMO→LUMO (22%) H-2→LUMO		
		(5%), HOMO→L+1 (9%)		
	1.9931/622	H-1→L+1 (35%), HOMO→LUMO (33%),		
		HOMO→L+1 (17%)		
TC-2 ¹⁻	1.3797/899	HOMO→LUMO (81%), H-2→LUMO (8%)		
	1.5857/782	H-2→LUMO (77%) H-5→LUMO (9%),		
		HOMO→LUMO (8%)		
	1.8313/677	H-1→LUMO (85%), H-6→LUMO (5%)		
TC-3 ¹⁺	1.7227/720	H-3→L+1 (16%), H-1→LUMO (17%), H-		
		1→L+1 (24%), HOMO→L+1 (20%)		
	1.7941/691	H-3→L+1 (40%), H-2→LUMO (15%), H-		
		2→L+1 (11%), H-1→L+1 (20%)		
	1.8687/663	H-2→LUMO (18%), H-2→L+1 (22%), H-		
		1→LUMO (16%), HOMO→LUMO (17%) H-		
		3→LUMO (5%), H-1→L+1 (7%),		
		HOMO→L+1 (6%)		

TC-	Hole	Electron	λ	Character
1+				
S5			0.5 6	Ru/C^N→B py
			0.4 2	Ru/C^N→B py
S8			0.9 8	Ru→Bpy
S30			0.5 3	Вру→Вру

Table S4. The dominant natural transition orbital pairs for the selected excited singlet states and eigenvalues (λ).

TC-	Hole	Electron	λ	Character
3+				

