Electronic Supplementary Information

Direct conversion of coordination compounds into Ni_2P nanoparticles entrapped in 3D mesoporous graphene for efficient hydrogen evolution reaction

Sungeun Jeoung,^a Bora Seo,^a Jeong Min Hwang,^a Sang Hoon Joo,^{ab} and Hoi Ri Moon*^a

^a Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST),

UNIST-gil 50, Ulsan 44919, Republic of Korea

^b School of Energy and Chemical Engineering, Ulsan National Institute of Science and

Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea

Corresponding Author: hoirimoon@unist.ac.kr

1. Supplementary Table S1 and Figures S1-S12

Table S1. Activity comparison table for HER in acidic media by nickel phosphide based catalysts. η_{10} indicates the overpotential required to drive a current density of -10 mA cm⁻².

Reference	Catalyst	Loading (mg cm ⁻²)	Electrolyte	η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)
This work	Ni ₂ P@mesoG	1	0.5 M H ₂ SO ₄	98	56
		3	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	79	83
[S1]	Ni ₂ P NPs/Ti	~1	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	~118	~46
[S2]	Ni ₂ P NPs	0.38	$1 \text{ M H}_2\text{SO}_4$	122	87
[S3]	Ni ₁₂ P ₅ NPs/Ti	3	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	107	63
[S4]	Ni ₂ P/Ti	2	1 M H ₂ SO ₄	122	60
[85]	NiP ₂ NS/CC	2.6	0.5 M H ₂ SO ₄	75	~51
[S6]	Ni ₅ P ₄	177	1 M H ₂ SO ₄	23	33
[S7]	Ni ₅ P ₄ -Ni ₂ P NS/Ni foam	-	0.5 M H ₂ SO ₄	120	79.1
[S8]	Ni ₂ P-G@Ni foam	-	0.5 M H ₂ SO ₄	55	~30/107
[89]	Ni ₅ P ₄	1.99	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	118	42

Figure S1. TEM images of mesoG before (a) and after (b) acid etching.

Figure S2. (a) STEM image of Ni₂P@mesoG and (b-d) corresponding EDS mapping images for (b) nickel, (c) phosphorus, and (d) nitrogen.

Figure S3. N₂ adsorption-desorption isotherms of Ni@mesoG and Ni₂P@mesoG.

Figure S4. XRPD patterns of Ni@mesoG samples phosphidated at 300, 400 (Ni₂P@mesoG), 500, and 600 °C.

Figure S5. TEM images of Ni@mesoG samples phosphidated at 300, 400 (Ni₂P@mesoG), 500, and 600 °C.

Figure S6. N₂ adsorption-desorption isotherms of Ni@mesoG samples phosphidated at 300, 400 (Ni₂P@mesoG), 500, 600 °C.

Figure S7. Ni $2p_{3/2}$ XPS spectra of Ni@mesoG samples phosphidated at (a) 300, (b) 500, and (c) 600 °C.

Figure S8. P $2p_{3/2}$ XPS spectra of Ni@mesoG samples phosphidated at (a) 300, (b) 500, and (c) 600 °C.

Figure S9. C 1*s* XPS spectra of Ni@mesoG samples phosphidated at (a) 300, (b) 500, and (c) 600 °C.

Figure S10. (a) TEM image and (b) XRPD pattern of $Ni_2P/mesoG$.

Figure S11. Polarization curves for $Ni_2P@mesoG$ with different catalyst loadings in (a) 0.5 M H₂SO₄, and (b) 1 M KOH.

Figure S12. (a) Nyquist plots for the impedance spectra obtained at $\eta = 100 \text{ mV}$ (vs RHE) in 1 M KOH. The empty triangles and the solid lines represent numerical raw data and fitting results, respectively. (b) Tafel plots in 1 M KOH. The Tafel plots were depicted with error bar and without correction for ohmic drop.

2. References for Electronic Supplementary Information

- S1. E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis and R. E. Schaak, J. Am. Chem. Soc., 2013, 135, 9267.
- S2. L. Feng, H. Vrubel, M. Bensimon and X. Hu, Phys. Chem. Chem. Phys., 2014, 16, 5917.
- S3. Z. Huang, Z. Chen, Z. Chen, C. Lv, H. Meng and C. Zhang, ACS Nano, 2014, 8, 8121.
- S4. Z. Pu, Z. Liu, C. Tang, A. M. Asiri and X. Sun, Nanoscale, 2014, 6, 11031.
- S5. P. Jiang, Q. Liu and X. Sun, Nanoscale, 2014, 6, 13440.
- S6. A. B. Laursen, K. R. Patraju, M. J. Whitaker, M. Retuerto, T. Sarkar, N. Yao, K. V. Ramanujachary, M. Greenblatt and G. C. Dismukes, *Energy Environ. Sci.*, 2015, **8**, 1027.
- S7. X. Wang, Y. V. Kolen'ko, X.-Q. Bao, K. Kovnir and L. Liu, *Angew. Chem. Int. Ed.*, 2015, 54, 8188.
- S8. A. Han, S. Jin, H. Chen, H. Ji, Z. Sun and P. Du, J. Mater. Chem. A, 2015, 3, 1941.
- S9. Y. Pan, Y. Liu, J. Zhao, K. Yang, J. Liang, D. Liu, W. Hu, D. Liu, Y. Liu and C. Liu, J. Mater. Chem. A, 2015, 3, 1656.