Supporting Information

Improvement of D- π -A organic dye-based dye-sensitized solar cell performance by simple triphenylamine donor substitutions on the π linker of the dye

T. Sudyoadsuk,^a A. Thangthong,^a N. Prachumrak,^a P. Nalaoh,^a S. Jungsuttiwong,^b R. Daengngern,^c S. Namuangruk,^c P. Pattanasattaya^a and V. Promarak^{a*}

^a Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand

^b Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand

^c NANOTEC, National Science and Technology Development Agency, Pathum Thani 12120, Thailand

*e-mail: vinich.p@vistec.ac.th

.....

1. Quantum chemical calculation results

Table S1. The optimized geometry parameters, dihedral angles (in degree), of the dyes computed at B3LYP/6-31G(d,p) level.

Dye	Dihedral angle (°) / intergroup						
	π 1-π2	π2-π3	π3-π4	π3-А			
T1	-24.30	10.75	-4.91	0.27			
Τ2	-24.30	16.01	-28.05	3.03			
Т3	-24.35	37.82	-29.94	3.69			
T4	-26.81	55.37	-30.71	3.37			
Note: $\pi 1$ = Triphenylamine, $\pi 2$ - $\pi 4$ = Thiophenes, and A = Cyanoacrylic acid							

Figure S1. HOMO and LUMO of the dyes calculated by B3LYP/6-31G(d,p) level.

Table S2. Excitation energy (E_{ex}) , oscillator strength (f) and transition composition of the dyes
calculated by TD-CAM-B3LYP/6-31G(d,p) in CH_2Cl_2 solvent.

Dyes	Transition	E _{ex} ,	f	Composition
		eV (nm)		H=HOMO, L=LUMO,
T1	$S_0 \rightarrow S_1$	2.56 (485)	2.0919	0.53 (H→L)+0.40 (H-1→L)
	$S_0 \rightarrow S_3$	3.79 (327)	0.2045	0.40 (H→L)+0.26 (H-1→L+1)
	$S_0 \rightarrow S_4$	4.10 (302)	0.3119	0.38 (H-1→L+1)+0.33 (H→L+1)
T2	$S_0 \rightarrow S_1$	2.62 (473)	1.8779	0.53 (H→L)+0.36 (H-2→L)
	$S_0 \rightarrow S_2$	3.23 (384)	0.1609	0.64 (H-1→L)
	$S_0 \rightarrow S_3$	3.47 (357)	0.1672	$0.46 (H \rightarrow L+1) + 0.36 (H-2 \rightarrow L)$
	$S_0 \rightarrow S_5$	3.97 (312)	0.6677	$0.35 (H \rightarrow L+2) + 0.34 (H-1 \rightarrow L+1)$
Т3	$S_0 \rightarrow S_1$	2.62 (474)	1.3284	0.55 (H→L)+0.33 (H-3→L)
	$S_0 \rightarrow S_3$	3.41 (364)	0.5260	0.57 (H-2→L)+0.28 (H-3→L)
	$S_0 \rightarrow S_4$	3.49 (355)	0.1797	0.43 (H→L+1)+0.34 (H-3→L)
	$S_0 \rightarrow S_5$	3.76 (330)	0.3260	$0.35 (H \rightarrow L) + 0.32 (H \rightarrow L + 1)$
	$S_0 \rightarrow S_6$	3.96 (313)	1.1369	0.36 (H→L+2)
T4	$S_0 \rightarrow S_1$	2.75 (451)	1.1432	0.51 (H→L)+0.37 (H-4→L)
	$S_0 \rightarrow S_3$	3.40 (364)	0.2165	0.54 (H-1→L)+0.26 (H-2→L)
	$S_0 \rightarrow S_4$	3.50 (354)	0.4442	0.40 (H→L+1)+0.31 (H-4→L)
	$S_0 \rightarrow S_5$	3.57 (348)	0.4432	0.34 (H-2→L)+0.33 (H-3→L)
	$S_0 \rightarrow S_6$	3.77 (329)	0.3166	$0.34 (H \rightarrow L) + 0.31 (H \rightarrow L + 1)$
	$S_0 \rightarrow S_7$	3.96 (313)	1.2051	0.0.29 (H-2→L+1)+0.26 (H→L+2)
	$S_0 \rightarrow S_8$	4.02 (309)	0.1792	$0.32 (H-3 \rightarrow L+1)+0.24 (H \rightarrow L+3)$

2. Fluorescence property

Figure S2. Photoluminescence spectra of dyes T1-4 in CH_2Cl_2 solution.

3. IMVS/IMPS plots

Figure S3 IMPS Nyquist plots of DSSCs based on dyes T1-T4 at different light intensities

Figure S4 IMVS Nyquist plots of DSSCs based on dyes T1-T4 at different light intensities

Bruker Compass DataAnalysis 4.3

printed: 10/14/2016 11:18:12 AM

by: VISTEC_Scientist Page 1 of 1

Bruker Compass DataAnalysis 4.3

printed: 10/14/2016 1:03:56 PM

by: VISTEC_Scientist Page 1 of 1

180 160 140 120 100 80 60 40 20 ppm

Compound T2

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

Compound T3

180 160 140 120 100 80 60 40 20 0 ppm

Compound T4

