Supporting Information

Understanding the interfacial interactions between dopamine and different graphenes for biomedical materials

Hong-ping Zhang ^{a, *}, Xuegang Luo ^a, Xiaoyan Lin ^a, Xiong Lu ^b, Zhenming Wang ^b, Liming Fang ^c, Youhong Tang ^{d, *}

^a Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China

^b Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.

^c School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China

^d Centre for NanoScale Science and Technology and School of Computer Science, Engineering and Mathematics, Flinders University, South Australia 5042, Australia

Figure S1: Optimized model of graphene oxide. Bond lengths of C-O of ortho epoxy were shown in black, and bond lengths of OH were shown in green.

Figure S2: Optimized GO-DA interacting system, DA lying, standing with $-NH_2$ and standing with -OH on GO from left to right.