Electronic supplementary information (ESI)

Green light-emitting 2-(*1H*-indol-3-yl)acetonitrile based D-A fluorophores – A combined theoretical and experimental study

Subramanian Muruganantham,^[a], Natarajan Nagarajan,^[a] Gunasekaran Velmurugan, ^[a,b] Asit

Prakash, ^[c] Monica Katiyar,^{*[c]} Ponnambalam Venuvanalingam,^{*[a]} and Rajalingam Renganathan^{*[a]}

^[a] School of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India.

^[b] Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra-400 076, India

^[c] Department of Materials Science & Engineering and Samtel Centre for Display Technologies Indian Institute of Technology Kanpur, Kanpur-208016, India

*Author for correspondence

E-Mail: rrengas@gmail.com, Ph: ++91-431-2407053, Fax: ++91-431-2407045

Contents

Figures Number	Title	Page no
Figure S1	Absorption spectra of all the compounds in THF solvent.	5
Figure S2	Absorption and Emission spectra of TIN , T2IN and PY2IN for thin film.	5
Figure S3	Absorption spectra of T2IN in different solvents	6
Figure S4	Absorption spectra of TIN in different solvents	6
Figure S5	Absorption spectra of AIN in different solvents	7
Figure S6	Absorption spectra of NIN in different solvents	7
Figure S7	Absorption spectra CIN in different solvents	8
Figure S8	Absorption spectra PYRIN in different solvents	8
Figure S9	Absorption spectra PY2IN in different solvents	9
Figure S10	Emission spectra of NIN in different solvents.	9
Figure S11	Emission spectra of PYRIN in different solvents.	10
Figure S12	Emission spectra of PY2IN in different solvents.	10
Figure S13	Emission spectra of CIN in different solvents.	11
Figure S14	Emission spectra of AIN in different solvents.	11
Figure S15	Fluorescence decay curves of CIN in all of the solvents studied.	12
Figure S16	Fluorescence decay curves of PY2IN in all of the solvents studied.	12
Figure S17	Fluorescence decay curves of PYRIN in all of the solvents studied.	13
Figure S18	Cyclic volatamogram of AIN with multi scan rate in DMF.	13
Figure S19	Cyclic volatamogram of PYRIN with multi scan rate in DMF.	14
Figure S20	Cyclic volatamogram of NIN with multi scan rate in DMF.	14
Figure S21	Cyclic volatamogram of TIN with multi scan rate in DMF	15
Figure S22	Cyclic volatamogram of T2IN with multi scan rate in DMF	15
Figure S23	Cyclic volatamogram of CIN with multi scan rate in DMF	16

Figure S24	 AFM image of PYRIN (1), T2IN (2) and TIN (3) in thin films. a) Non annealed 2D View (10ηm) b) annealed 2D view (5 ηm) c) Non annealed at 100 °C in 3D view (10 ηm) d) annealed at 100 °C in 3D view (5 ηm). 	16
Figure S25	B3LYP/6-311G(d,p) optimized structures of chosen flurophores.	17
Figure S26	Illustration of π -delocalization from calculated C-C bond lengths of the chosed molecules at B3LYP/6-311G(d,p) level.	18

Table

Tables	Title	Page no
Number		
TableS1	life time data for all the solvents in TIN	19
TableS2	life time data for all the solvents in T2IN	19
TableS3	life time data for all the solvents in P2IN	20
TableS4	life time data for all the solvents in PYRIN	20
TableS5	life time data for all the solvents in CIN	21
TableS6	Frontier molecular orbital energies (eV) of chosen molecules computed at the B3LYP/6-311+ $G(d,p)$ level.	21
TableS7	Molecular orbital composition (%) of various fragments of AIN in the ground state.	22
TableS8	Molecular orbital composition (%) of various fragments NIN in the ground state.	23
TableS9	Molecular orbital composition (%) of various fragments PYRIN in the ground state.	24
TableS10	Molecular orbital composition (%) of various fragments CIN in the ground state.	24
TableS11	Molecular orbital composition (%) of various fragments TIN in the ground state.	24
TableS12	Molecular orbital composition (%) of various fragments T2IN in the ground state.	25
TableS13	Molecular orbital composition (%) of various fragments P2YIN in the ground state.	25

Figure S1: Absorption spectra of all the compounds in THF solvent.

Figure S2: Absorption and Emission spectra of TIN, T2IN and PY2IN for thin film.

Figure S3: Absorption spectra of T2IN in different solvents

Figure S4: Absorption spectra of TIN in different solvents

Figure S5: Absorption spectra of AIN in different solvents

Figure S6: Absorption spectra of NIN in different solvents

Figure S7: Absorption spectra CIN in different solvents

Figure S8: Absorption spectra **PYRIN** in different solvents

Figure S9: Absorption spectra PY2IN in different solvents

Figure S10: Emission spectra of NIN in different solvents.

Figure S11: Emission spectra of **PYRIN** in different solvents.

Figure S12: Emission spectra of **PY2IN** in different solvents.

Figure S13: Emission spectra of CIN in different solvents.

Figure S14: Emission spectra of AIN in different solvents.

Figure S15: Fluorescence decay curves of **CIN** in all of the solvents studied.

Figure S16: Fluorescence decay curves of **PY2IN** in all of the solvents studied.

Figure S17: Fluorescence decay curves of **PYRIN** in all of the solvents studied.

Figure S18: Cyclic volatamogram of AIN with multi scan rate in DMF.

Figure S19: Cyclic volatamogram of **PYRIN** with multi scan rate in DMF.

Figure S20: Cyclic volatamogram of NIN with multi scan rate in DMF.

Figure S21: Cyclic volatamogram of TIN with multi scan rate in DMF.

Figure S22: Cyclic volatamogram of T2IN with multi scan rate in DMF.

Figure S23: Cyclic volatamogram of CIN with multi scan rate in DMF.

Figure S24 AFM image of PY2IN (1), T2IN (2) and TIN (3) in thin films. a) Non annealed 2D View (10ηm) b) annealed 2D view (5 ηm) c) Non annealed at 100 °C in 3D view (10 ηm) d) annealed at 100 °C in 3D view (5 ηm).

Figure S25: B3LYP/6-311G(d,p) optimized structures of chosen flurophores.

Figure S26: Illustration of π -delocalization from calculated C-C bond lengths of the chosed molecules at B3LYP/6-311G(d,p) level.

					TIN			
SOLVENT	τ ₁ [ns]	α ₁ [%]	τ ₂ [ns]	α ₂ [%]	< τ> ns	χ^2	K _r (10 ⁷ s ⁻¹)	K _{nr} (10 ⁷ s ⁻¹)
CYHEX	3.81	62.75	2.40	37.25		0.88		
CHCl ₃	8.14	28.54	3.45	71.46	8.92	1.17	1.12	10.08
MeOH	1.33	26.35	4.51	73.65	4.20	0.95	0.47	23.33
ELG	6.12	39.08	5.76	60.92	5.90	1.10	5.76	11.18
MeCN	2.59	49.61	4.27	50.39	3.64	1.29	0.54	26.92
DMSO	2.62	44.39	5.71	55.61	4.88	1.00	1.63	18.85

Table S1: life time data for all the solvents in TIN

Table S2: Life time data for all the solvents in T2IN

SOLVENT		T ₂ IN										
SULVENI	τ ₁ [ns]	α ₁ [%]	τ ₂ [ns]	α ₂ [%]	τ ₃ [ns]	α ₃ [%]	< τ> ns	χ^2	K _r (10 ⁷ s ⁻¹)	K _{nr} (10 ⁷ s ⁻¹)		
CYHEX	1.11	74.30	3.56	25.70	-	-		0.93				
МеОН	1.73	50.73	2.90	49.27	-	-	2.45	1.43	0.40	40.40		
CHCl ₃	2.09	27.95	1.15	5.30	4.92	66.75	4.44	1.22	2.92	19.59		
MeCN	2.21	69.62	3.82	30.38	-	-	2.90	1.02	0.34	34.13		
DMSO	2.91	74.86	5.93	25.14	-	-	4.13	1.02	0.48	23.72		
ELG	5.23	78.88	5.03	21.12	-	-	5.18	1.29	3.47	15.83		

		PY ₂ IN									
SOLVENT	τ ₁ [ns]	α ₁ [%]	τ ₂ [ns]	α ₂ [%]	τ ₃ [ns]	α ₃ [%]	<τ> ns	χ ²	K _r (10 ⁷ s ⁻¹)	K_{nr} (10 ⁷ s ⁻¹)	
CYHEX	1.93	61.58	1.63	8.09	4.44	30.33		1.09			
CHCl ₃	6.59	80.95	2.73	19.05	-	-	6.24	1.19	7.85	8.17	
MeOH	1.82	25.31	9.38	7.08	3.32	67.61	4.30	1.22	3.95	19.30	
ELG	9.69	89.92	6.13	10.08	-	-	9.45	1.19	3.59	6.98	
MeCN	3.67	70.93	3.50	29.07	-	-	3.62	1.07	1.93	25.69	
DMSO	8.32	5.13	5.41	94.87	-	-	5.63	1.10	3.55	14.20	

Table S3: life time data for all the solvents in PY2IN

Table S4: life time data for all the solvents in PYRIN

SOLVEN	PYRIN									
T	τ ₁	α ₁	τ2	α ₂	<7>	χ ²	K _r	K _{nr}		
	[ns]	[%]	[ns]	[%]	ns		$(10^7 s^{-1})$	$(10^7 s^{-1})$		
CYHEX	6.25	57.57	4.17	42.43		0.86				
CHCl ₃	4.88	39.25	4.27	60.75	4.52	1.19	1.09	98.90		
МеОН	1.85	40.62	4.11	59.38	3.57	0.95	1.06	26.94		
ELG	5.24	79.53	5.96	20.47	5.40	0.96	2.96	15.55		
MeCN	1.47	31.89	4.47	68.11	4.06	1.12	0.93	23.69		
DMSO	5.23	100	-	-	5.23	1.20	3.25	15.86		

						CIN				
SOLVENT	τ ₁ [ns]	α ₁ [%]	τ ₂ [ns]	α ₂ [%]	τ ₃ [ns]	α ₃ [%]	< τ> ns	χ^2	K _r (10 ⁷ s ⁻¹)	K _{nr} (10 ⁷ s ⁻¹)
CYHEX	3.64	23.47	1.94	54.33	7.02	22.20		0.86		
CHCl ₃	3.81	59.39	2.01	33.97	1.15	6.11	3.34	1.23	6.58	23.35
МеОН	8.67	92.84	3.09	7.16	-	-	8.51	1.11	1.64	10.10
ELG	1.57	54.09	9.63	45.91	-	-	8.33	1.18	6.72	5.28
MeCN	6.02	77.67	4.28	22.33	_	-	5.72	0.99	6.11	16.95

Table S5: life time data for all the solvents in CIN

Table S6. Frontier molecular orbital energies (eV) of chosen molecules computed at the B3LYP/6-311+G(d,p) level.

									Band
	HOMO-3	HOMO-2	HOMO-1	HOMO	LUMO	LUMO+1	LUMO+2	LUMO+3	Gap
AIN	-6.82	-6.71	-6.13	-5.48	-2.25	-1.54	-1.00	-0.77	3.22
NIN	-7.09	-6.62	-6.37	-5.85	-2.22	-1.21	-0.85	-0.85	3.63
PYRIN	-6.68	-6.66	-6.18	-5.48	-2.40	-1.43	-1.06	-0.97	3.08
CIN	-6.40	-6.28	-6.09	-5.46	-1.87	-1.35	-0.74	-0.31	3.59
TIN	-6.88	-6.43	-5.95	-5.30	-2.05	-1.06	-0.92	-0.78	3.25
T2IN	-6.47	-6.13	-5.80	-5.32	-2.31	-2.00	-1.16	-0.88	3.01
PY2IN	-6.68	-6.61	-5.77	-5.68	-2.36	-2.34	-1.17	-1.12	3.32

Table S7. Molecular orbital composition (%) of various fragments of AIN in the ground state.

	Energy (eV)	Donor	π-Spacer	Acceptor
HOMO-3	-6.824	39.35	51.22	9.42
HOMO-2	-6.71	17.53	35.8	46.67
HOMO-1	-6.126	21.15	42.4	36.45
HOMO	-5.477	70.25	9.75	20
LUMO	-2.252	49.82	31.57	18.61
LUMO+1	-1.545	29.08	19.95	50.97
LUMO+2	-0.996	54.45	7.62	37.94
LUMO+3	-0.775	60.2	29.18	10.63

Table S8. Molecular orbital composition (%) of various fragments of NIN in the ground state

	Energy (eV)	Donor	π-Spacer	Acceptor
HOMO-3	-7.093	82.71	7.68	9.61
HOMO-2	-6.622	32.02	35.47	32.51
HOMO-1	-6.371	45.52	12.56	41.91
HOMO	-5.852	57.16	23.86	18.98
LUMO	-2.217	64.9	12.23	22.87
LUMO+1	-1.21	58.87	17.73	23.4
LUMO+2	-0.879	42.16	40.63	17.21
LUMO+3	-0.849	52.8	30.95	16.25

Table S9. Molecular orbital composition (%) of various fragments of **PYRIN** in the ground state.

	Energy (eV)	Donor	π-Spacer	Acceptor
HOMO-3	-6.684	24.52	26.82	48.66
HOMO-2	-6.665	34.28	26.43	39.28
HOMO-1	-6.184	42.44	24.62	32.94
HOMO	-5.477	61.09	8.26	30.66
LUMO	-2.401	56.86	18.34	24.81
LUMO+1	-1.434	40.95	26.7	32.36
LUMO+2	-1.061	49.14	11.11	39.75
LUMO+3	-0.973	37.21	15.78	47.01

Table S10. Molecular orbital composition (%) of various fragments of CIN in the ground state.

	Energy (eV)	Donor	π-Spacer	Acceptor
HOMO-3	-6.397	31.78	5.82	62.4
HOMO-2	-6.281	17.62	12.55	69.84
HOMO-1	-6.09	42.96	35.93	21.1
НОМО	-5.462	58.72	24.46	16.83
LUMO	-1.874	44.63	16.96	38.4
LUMO+1	-1.347	61.33	4.57	34.11
LUMO+2	-0.743	68.56	7.53	23.91
LUMO+3	-0.314	75.7	5.81	18.49

Table S11. Molecular orbital composition (%) of various fragments of TIN in the ground state.

	Energy (eV)	Energy (eV) Donor π-Spacer		Acceptor	
HOMO-3	-6.878	46.2	20.05	33.75	
HOMO-2	-6.428	14.96	4.77	80.26	
HOMO-1	-5.955	39.55	36.46	23.99	
НОМО	-5.3	67.26	11.84	20.9	
LUMO	-2.051	30.29	20.97	48.73	
LUMO+1	-1.062	93.78	0.8	5.42	
LUMO+2	-0.919	94.85	2.36	2.79	
LUMO+3	-0.783	46.2	12.77	41.02	

Table S12. Molecular orbital composition (%) of various fragments of **T2IN** in the ground state.

	Energy (eV)	Donor	π-Spacer	π-Spacer	Acceptor	Acceptor
HOMO-3	-6.467	14.53	1.44	4.54	0.56	78.93
HOMO-2	-6.132	30.71	20.21	18.81	16.41	13.86
HOMO-1	-5.801	49.21	13.39	17.58	10.62	9.2
НОМО	-5.322	54.98	8.15	5	18.16	13.71
LUMO	-2.31	36.93	13.83	11.14	19.93	18.17
LUMO+1	-1.996	24.16	9.77	9.78	30.07	26.23
LUMO+2	-1.159	85.99	1.2	1.01	5.44	6.36
LUMO+3	-0.879	55.72	6.59	3.54	30.18	3.97

Table S13. Molecular orbital composition (%) of various fragments of **PY2IN** in the ground state.

	Energy (eV)	Donor	π-Spacer	π-Spacer	Acceptor	Acceptor
HOMO-3	-6.684	25.96	7.56	7.56	29.45	29.46
HOMO-2	-6.614	33.59	13.58	13.58	19.62	19.62
HOMO-1	-5.767	65.48	6.56	6.56	10.7	10.7
HOMO	-5.681	70.18	7.19	7.19	7.72	7.72
LUMO	-2.362	59.14	9.57	9.57	10.86	10.86
LUMO+1	-2.339	51.98	11.52	11.53	12.48	12.48
LUMO+2	-1.171	37.76	6.32	6.32	24.8	24.8
LUMO+3	-1.122	51.51	6.84	6.84	17.41	17.41