Electronic Supplementary Information

Tetraphenylfuran: Aggregation-Induced Emission or Aggregation-Caused Quenching?

Han Nie,‡^a Kun Hu,‡^a Yuanjing Cai,^a Qian Peng,^b Zujin Zhao,^a Rongrong Hu,^a Junwu Chen,^a Shi-Jian Su,^a Anjun Qin*^a and Ben Zhong Tang*^{ac}

^a Guangdong Innovative Research Team, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China. E-mail: qinaj@zju.edu.cn

^b Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^c Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China. E-mail: tangbenz@ust.hk

Table of Contents

Experimental section	S3
Scheme S1 Synthetic routes to tetraphenylfuran and tetraphenylthiophene.	S5
Fig. S1 ¹ H NMR of TPF in CDCl ₃ .	S6
Fig. S2 ¹³ C NMR of TPF in CDCl ₃ .	S6
Fig. S3 ¹ H NMR of TPT in CDCl ₃ .	S7
Fig. S4 ¹³ C NMR of TPT in CDCl ₃ .	S7
Fig. S5 ORTEP drawings of the crystal structures of (A) TPF and (B) TPT.	S8
Fig. S6 (A) UV absorption spectra of TPF and TPT in THF solutions. (B) PL sp	ectra
of TPF and TPT in THF solutions (10 μM) and in solid films, excitation wavelen	gths:
327 nm for TPF and 320 nm for TPT.	S8
Fig. S7 PL spectra of (A) TPF and (B) TPT in THF/water mixtures with different	ent water
fractions (f_w). Concentration: 10 μ M; excitation wavelengths: 327 nm for TPF and	1 320 nm
for TPT.	S9
Fig. S8 Transient PL decay curves of (A) TPF and (B) TPT in THF solutions (10	μΜ).
Excitation wavelengths: 340 nm. Blue curves are instrument response factor (IRF)
data.	S9
Fig. S9 Transient PL decay curves of (A) TPF and (B) TPT in solid films, excita	ation
wavelengths: 340 nm. Blue curves are instrument response factor (IRF) data.	S10
Table S1 Calculated Absorption and Emission Data for TPF and TPT	S10
Table S2 Transient PL Decay Data for TPF and TPT	S10
Table S3 Crystallographic Data for TPF and TPT	S11
Table S4 Coordinate of TPF in ground state	S11
Table S5 Coordinate of TPF in first singlet excited state	S12
Table S6 Coordinate of TPT in ground state	S14
Table S7 Coordinate of TPT in first singlet excited state	S15
References	S16

Experimental section

Materials and Instrumentation: All reagents was purchased from Alfa Aesar or Sigma-Aldrich and used without further purification. Tetrahydrofuran (THF) was distilled under nitrogen at normal pressure from sodium benzophenone ketyl immediately prior to use. ¹H and ¹³C NMR spectra were measured using a Bruker AV-300. Chemical shifts were expressed in parts per million (ppm), and splitting patterns are designated as s (singlet), d (doublet), m (multiplet) and br (broad). Coupling constants J are reported in Hertz (Hz). The elemental analyses were carried out on a ThermoFinnigan Flash EA 1112. The high-resolution mass spectra (HRMS) were recorded using a GCT premier CAB048 mass spectrometer operating in matrixassisted laser desorption ionization time-of-flight (MALDI-TOF) mode. Single-crystal X-ray diffraction data were collected at 100 K on a Bruker–Nonices Smart Apex CCD diffractometer with graphite monochromated Mo Ka radiation. Processing of the intensity data was carried out using the SAINT and SADABS routines, and the structure and refinement were conducted using the SHELXL suite of X-ray programs (version 6.10). The absorption spectra were recorded using a Shimadzu UV-1700 spectrometer. The emission spectra were obtained using a Horiba Fluoromax-4 spectrofluorometer. The photoluminescence quantum yields were measured using a Hamamatsu absolute PL quantum yield spectrometer C11347 Quantaurus-QY. Transient PL at room temperature was measured using Quantaurus-Tau fluorescence lifetime measurement system (C11367-03, Hamamatsu Photonics Co., Japan). All decay was evaluated on TCC900 mode with 340 nm LED excitation source.

Computational details: The geometry optimization and harmonic vibrational frequency calculations of ground state (S_0) were carried out at the level of density functional theory (DFT). Then for the first single excited state (S_1), the time-dependent density functional theory (TD-DFT) was applied. The B3LYP functional has been applied with 6-31G(d,p) basis set.¹ It was confirmed that all the frequencies obtained at the minima of S_0 and S_1 states are positive, namely, the optimized structures are stable. On the basis of optimized S_0 geometry, the single point energies

were calculated at the level of B3LYP/6-31++G(d,p). All these electronic structure calculations were performed with Gaussian 09 program package.² The reorganization energy was obtained through the DUSHIN program, with the total reorganization energy projected to the molecular structure parameters relaxation.³

Synthesis of tetraphenylfuran (TPF)⁴

Diphenylacetylene (0.89 g, 5 mmol), Pd(OAc)₂ (0.11 g, 0.5 mmol), and ZnCl₂ (0.14 g, 1 mmol) were added to an oven-dried Schlenck tube under air. The septum-sealed tube was evacuated and refilled with O₂ three times. *N*,*N*-Dimethylformamide (DMF) (2.5 mL) and perfluorodecalin (2.5 mL) were added via syringe. The reaction mixture was heated in an oil bath at 60 C for 24 h. After the reaction completed, 0.73g TPF (78% yield) was obtained by silica-gel column chromatography with petroleum ether as eluent. ¹H NMR (500 MHz, CDCl₃, δ , ppm): 7.53–7.50 (m, 4H), 7.28–7.19 (m, 12H), 7.18–7.14 (m, 4H). ¹³C NMR (125 MHz, CDCl₃, δ , ppm): 147.7, 133.1, 130.9, 130.4, 128.4, 128.3, 127.3, 127.1, 125.8, 125.1. Anal. calcd. for C₂₈H₂₀O (%): C, 90.29; H, 5.14; found: C, 90.05; H, 5.35. HRMS (MALDI-TOF, *m/z*): [M]⁺ calcd for C₂₈H₂₀O, 372.1514; found, 372.1506.

Synthesis of tetraphenylthiophene (TPT)⁵

An oven-dried Schlenck flask was charged with tetrabromothiophene (1.20 g, 3 mmol), phenylboronic acid (2.19 g, 18 mmol), Pd(PPh₃)₄ (0.42 g, 0.36 mmol) and powered, anhydrous K₃PO₄ (24 mmol, 5.09 g). The Schlenk flask was filled with nitrogen. The dioxane (60 mL) and distilled water (15 mL) were added by syringe. The reaction mixture was stirred and refluxed for 12 h at 60 °C. After cooling to room temperature, the product was extracted with chloroform (3×100 mL), and the organic layer was washed with water and dried over magnesium sulfate. After filtration and solvent evaporation under reduced pressure, the product was purified by silica-gel column chromatography using petroleum ether as eluent. TPT was obtained in a 43% yield (500 mg) after recrystallization from a mixture of chloroform/petroleum ether. ¹H NMR (500 MHz, CDCl₃, δ , ppm): 7.25–7.17 (m, 10H), 7.15–7.08 (m, 6H), 6.98–

6.95 (m, 4H). ¹³C NMR (125 MHz, CDCl₃, *δ*, ppm): 139.5, 138.5, 136.4, 134.2, 130.8, 129.2, 128.3, 127.8, 127.2, 126.6. Anal. calcd. for C₂₈H₂₀S (%): C, 86.56; H, 5.19; found: C, 86.53; H, 5.12. HRMS (MALDI-TOF, *m/z*): [M]⁺ calcd for C₂₈H₂₀S, 388.1286; found, 388.1270.

Preparation of nanoaggregates of TPF and TPT.

Stock THF solutions of TPF or TPT with a concentration of 10⁻⁴ M were prepared. Aliquots of the stock solution were transferred to 10 mL volumetric flasks. After appropriate amounts of THF were added, water was added dropwise under vigorous stirring to furnish 10⁻⁵ M solutions with different water fractions (0-99 vol%). Because TPF and TPT are soluble in THF but insoluble in water, the molecules must have aggregated into nanoaggregates when large amount water fractions are added. The PL spectra and quantum yields measurements of the resultant solutions were then performed immediately.

Scheme S1 Synthetic routes to tetraphenylfuran and tetraphenylthiophene.

Fig. S1 ¹H NMR of TPF in CDCl₃.

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Fig. S3 ¹H NMR of TPT in CDCl₃.

Fig. S4 ¹³C NMR of TPT in CDCl₃.

Fig. S5 ORTEP drawings of the crystal structures of (A) TPF and (B) TPT.

Fig. S6 (A) UV absorption spectra of TPF and TPT in THF solutions. (B) PL spectra of TPF and TPT in THF solutions (10 μ M) and in solid films, excitation wavelengths: 327 nm for TPF and 320 nm for TPT.

Fig. S7 PL spectra of (A) TPF and (B) TPT in THF/water mixtures with different water fractions (f_w). Concentration: 10 μ M; excitation wavelengths: 327 nm for TPF and 320 nm for TPT.

Fig. S8 Transient PL decay curves of (A) TPF and (B) TPT in THF solutions (10 μ M). Excitation wavelengths: 340 nm. Blue curves are instrument response factor (IRF) data.

Fig. S9 Transient PL decay curves of (A) TPF and (B) TPT in solid films, excitation wavelengths: 340 nm. Blue curves are instrument response factor (IRF) data.

	Electronic state transition	Vertical excitation energy [eV (nm)]	Oscillator strength <i>f</i>	Main configuration (%)
		Absorpti	on	
TPF	$S_0 \rightarrow S_1$	3.71 (334)	0.47	HOMO→LUMO (99)
TPT	$S_0 \rightarrow S_1$	3.85 (322)	0.33	HOMO→LUMO (98)
		Emissic	on	
TPF	$S_1 \rightarrow S_0$	3.12 (397)	0.46	LUMO→HOMO (99)
TPT	$S_1 \rightarrow S_0$	2.80 (416)	0.43	LUMO→HOMO (99)

Table S1 Calculated Absorption and Emission Data for TPF and TPT

Table S2 Transient PL Decay Data for TPF and TPT^a

	state	CHI	<\alpha > (ns)	τ_1 (ns)	τ_2 (ns)	A_1	A ₂
TPF	solution	1.80	0.68	0.048	0.98	19204	1939
TPT	solution	1.53	0.24	0.12	1.25	9676	106
TPF	film	1.12	0.06	0.08	0.22	14605	-695
TPT	film	1.29	0.11	0.10	3.08	12323	2

^{*a*} The transient PL decay data were fitted by double-exponential function and the average fluorescence lifetimes ($\langle \tau \rangle$) were calculated by $\langle \tau \rangle = \Sigma A_i \tau_i^2 / \Sigma A_i \tau_i$, where A_i is the pre-exponential for lifetime τ_i .

	TPF	ТРТ
chemical formula	$C_{28}H_{20}O$	$C_{28}H_{20}S$
formula weight	372.44	388.50
crystal system	monoclinic	monoclinic
space group	I 2/c	I 1 2 1
Ζ	8	4
<i>a</i> [Å]	21.710(7)	15.4081(5)
<i>b</i> [Å]	8.1600(15)	6.0485(2)
<i>c</i> [Å]	24.855(8)	22.1271(7)
α [deg]	90	90
β [deg]	113.396(19)	102.299(3)
γ [deg]	90	90
V [Å ³]	4041(2)	2014.83(11)
density [g/cm ³]	1.224	1.281
$\mu \text{ [mm^{-1}]}$	0.073	1.489
<i>F</i> (000)	1568.0	816.0
crystal size [mm]	$0.31 \times 0.27 \times 0.25$	$0.35 \times 0.04 \times 0.02$
temperature [K]	293(2)	173(3)
radiation (λ), [Å]	0.71073	1.54178
no. of collected reflns.	16508	5771
no. of independent reflns. (R ^{int})	3987 (0.0270)	2833 (0.0361)
R_1 , w R_2 (all data)	0.0489, 0.1095	0.0378, 0.0851

 Table S3 Crystallographic Data for TPF and TPT

 Table S4 Coordinate of TPF in ground state^a

atom	Х	у	Z
0	0.00002400	-1.79707200	-0.00002500
С	2.39251400	-1.70785300	0.05954000
С	-1.48446700	2.51707900	-0.94586100
Н	-0.76220200	2.39676400	-1.74705900
С	1.59143900	1.52213100	-0.03925700
С	1.48446900	2.51707200	0.94590800
Н	0.76224500	2.39670500	1.74713500
С	1.11286800	-1.00044600	0.01009100
С	-2.29564400	3.65061800	-0.90408100
Н	-2.20040900	4.40812300	-1.67670500

С	2.47131800	-3.04233700	-0.38179300
Н	1.58089600	-3.52532600	-0.76879900
С	-2.52660100	1.69970900	1.07255700
Н	-2.61210300	0.94165900	1.84514200
С	0.72325800	0.32261800	-0.00285500
С	-0.72324300	0.32260600	0.00285100
С	-1.59145300	1.52209700	0.03926200
С	-3.33851900	2.83246000	1.11210500
Н	-4.05578600	2.95192800	1.91909200
С	-2.39247200	-1.70787700	-0.05955300
С	2.52652900	1.69981400	-1.07259300
Н	2.61201500	0.94179900	-1.84521400
С	-1.11283000	-1.00046200	-0.01011000
С	-2.47127500	-3.04235700	0.38179000
Н	-1.58085200	-3.52534400	0.76879700
С	3.55481800	-1.09741800	0.56546100
Н	3.51065200	-0.07983600	0.93463200
С	-3.22633800	3.81188500	0.12344000
Н	-3.85743800	4.69523200	0.15543500
С	2.29561100	3.65063600	0.90413500
Н	2.20039100	4.40810800	1.67679300
С	4.82723400	-3.11823200	0.16323300
Н	5.76717900	-3.66071700	0.20183900
С	-4.75786700	-1.79716200	-0.61023200
Н	-5.64378400	-1.30966700	-1.00683900
С	3.33841200	2.83259100	-1.11213500
Н	4.05563500	2.95211200	-1.91915400
С	4.75790600	-1.79714100	0.61023400
Н	5.64382100	-1.30964700	1.00684600
С	-3.55477700	-1.09744000	-0.56546700
Н	-3.51060900	-0.07985600	-0.93463400
С	3.67656900	-3.73725300	-0.32864400
H	3.71745200	-4.76537800	-0.67679400
C	-3.67652600	-3.73727300	0.32864800
Н	-3.71741100	-4.76539700	0.67680300
C	3.22625100	3.81197200	-0.12342500
Ĥ	3.85732300	4.69533900	-0.15541500
C	-4.82719300	-3.11825200	-0.16322800
н	-5.76713900	-3.66073500	-0.20182700
^a Absolut	e energy = -1154 22	8926402 Hartree	
11000101			

Table S5 Coordinate of TPF in first singlet excited state^a

atom	Х	у	Z	
0	0.03405100	-1.82295500	-0.06096500	
~				

С	-2.34129900	-1.72591100	-0.12169400
С	1.32454400	2.72869200	0.60605700
Η	0.51859900	2.74976300	1.33118100
С	-1.62387400	1.48960600	0.16487100
С	-1.68005400	2.44383400	-0.86509900
Η	-1.05428800	2.31582700	-1.74223000
С	-1.09878800	-1.02560200	-0.00530800
С	2.13747700	3.84330500	0.44883900
Η	1.95164900	4.72886100	1.05002500
С	-2.33984000	-3.15118100	-0.06936200
Η	-1.40061000	-3.67037100	0.07736900
С	2.63137800	1.55273100	-1.06701600
Н	2.81189900	0.67079900	-1.67224100
С	-0.71317400	0.32762000	0.07119900
С	0.70138500	0.37263300	-0.01010100
С	1.54842800	1.55353500	-0.14912200
С	3.43444600	2.67866000	-1.22382500
Н	4.24960900	2.65621000	-1.94186500
С	2.39567500	-1.63732400	0.14070700
С	-2.43803800	1.66853000	1.29697700
Н	-2.39849300	0.93806300	2.09953300
С	1.14132500	-0.99379000	-0.01131300
С	2.50183300	-3.04837800	-0.08841300
Η	1.61937800	-3.59699400	-0.39749500
С	-3.58966100	-1.06822600	-0.31067600
Η	-3.62430400	0.01042700	-0.38397800
С	3.19913400	3.82946900	-0.46828700
Н	3.83301100	4.70302800	-0.58595300
С	-2.53005700	3.54392500	-0.76493700
Н	-2.56519300	4.27026600	-1.57163900
С	-4.74216700	-3.20145900	-0.36070200
Н	-5.66540900	-3.76548400	-0.45131000
С	4.78073300	-1.61470800	0.68515000
Н	5.66273200	-1.06809200	1.00780500
С	-3.28383600	2.77224700	1.39594300
Н	-3.90314500	2.89779900	2.27931500
С	-4.76012800	-1.80009600	-0.42659400
Н	-5.70033200	-1.27782300	-0.57812600
С	3.57987000	-0.93751000	0.54999000
Н	3.52391700	0.11427300	0.79535800
С	-3.52239100	-3.86542300	-0.18363900
Н	-3.49793800	-4.95029500	-0.13338100
С	3.71353900	-3.69753300	0.04866900
Н	3.77253200	-4.76542300	-0.14326900

С	-3.33362900	3.71324500	0.36474600
Н	-3.99411300	4.57186300	0.44106200
С	4.86906300	-2.99086400	0.43086100
Н	5.81674400	-3.50921200	0.54003900
^a Absolut	te energy = -1154.1	6390246 Hartree	e
Т	able S6 Coordinate	e of TPT in grou	nd state ^a
atom	Х	у	Z
S	-0.00009500	-2.31882800	-0.00036700
С	-1.26294200	-1.11272500	-0.01225400
С	-0.72373800	0.16141000	-0.00876200
С	0.72369900	0.16135900	0.00860300
С	1.26282000	-1.11280500	0.01209700
С	-2.66950400	-1.55810300	0.03409600
С	-3.09890100	-2.64835200	-0.74381700
Н	-2.39565600	-3.13557800	-1.41285600
С	-4.41697000	-3.09710700	-0.68040100
Н	-4.72707900	-3.93905700	-1.29255300
С	-4.92140300	-1.38041500	0.93613900
Н	-5.62599200	-0.88542300	1.59822700
С	-3.60335700	-0.93364900	0.88052800
Н	-3.28741000	-0.10250800	1.50067300
С	-1.54687500	1.40160300	-0.03475100
С	-2.46588300	1.62723100	-1.07202700
Н	-2.56665800	0.88774600	-1.86035900
С	-3.24430700	2.78384000	-1.09672000
Н	-3.94880200	2.94055200	-1.90858200
С	-3.11774200	3.73711800	-0.08505700
С	-2.20492400	3.52637800	0.94976100
Н	-2.09851500	4.26304000	1.74093900
С	-1.42509800	2.37072600	0.97420700
Н	-0.71508400	2.21453900	1.78017500
С	1.54694100	1.40147900	0.03468100
С	2.46602500	1.62690500	1.07193400
Н	2.56677300	0.88732100	1.86017600
С	3.24455600	2.78344000	1.09671400
Н	3.94910700	2.93999800	1.90855700
С	3.11803100	3.73683800	0.08515900
С	2.20515000	3.52629100	-0.94964300
Н	2.09877700	4.26304500	-1.74074100
С	1.42521800	2.37071300	-0.97417700
Н	0.71515500	2.21467400	-1.78013100
С	2.66937100	-1.55822500	-0.03408800
С	3.09860000	-2.64866800	0.74364500
Н	2.39521900	-3.13604700	1.41243200

C4.41667400-3.097430000.68037200H4.72665200-3.939535001.29237400C5.33492500-2.46356800-0.15730900C4.92145100-1.38032900-0.93562900H5.62618100-0.88517000-1.59744200C3.60340000-0.93355900-0.88016500H3.28758800-0.10223900-1.50014100C-5.33504900-2.463443000.15761800H3.723796004.63823800-0.10407900H3.724170004.637899000.10424800H6.36270500-2.81104400-0.20522600H-6.36282300-2.810920000.20565200				
H4.72665200-3.939535001.29237400C5.33492500-2.46356800-0.15730900C4.92145100-1.38032900-0.93562900H5.62618100-0.88517000-1.59744200C3.60340000-0.93355900-0.88016500H3.28758800-0.10223900-1.50014100C-5.33504900-2.463443000.15761800H-3.723796004.63823800-0.10407900H3.724170004.637899000.10424800H6.36270500-2.81104400-0.20522600H-6.36282300-2.810920000.20565200	С	4.41667400	-3.09743000	0.68037200
C5.33492500-2.46356800-0.15730900C4.92145100-1.38032900-0.93562900H5.62618100-0.88517000-1.59744200C3.60340000-0.93355900-0.88016500H3.28758800-0.10223900-1.50014100C-5.33504900-2.463443000.15761800H-3.723796004.63823800-0.10407900H3.724170004.637899000.10424800H6.36270500-2.81104400-0.20522600H-6.36282300-2.810920000.20565200	Н	4.72665200	-3.93953500	1.29237400
C4.92145100-1.38032900-0.93562900H5.62618100-0.88517000-1.59744200C3.60340000-0.93355900-0.88016500H3.28758800-0.10223900-1.50014100C-5.33504900-2.463443000.15761800H-3.723796004.63823800-0.10407900H3.724170004.637899000.10424800H6.36270500-2.81104400-0.20522600H-6.36282300-2.810920000.20565200	С	5.33492500	-2.46356800	-0.15730900
H5.62618100-0.88517000-1.59744200C3.60340000-0.93355900-0.88016500H3.28758800-0.10223900-1.50014100C-5.33504900-2.463443000.15761800H-3.723796004.63823800-0.10407900H3.724170004.637899000.10424800H6.36270500-2.81104400-0.20522600H-6.36282300-2.810920000.20565200	С	4.92145100	-1.38032900	-0.93562900
C3.60340000-0.93355900-0.88016500H3.28758800-0.10223900-1.50014100C-5.33504900-2.463443000.15761800H-3.723796004.63823800-0.10407900H3.724170004.637899000.10424800H6.36270500-2.81104400-0.20522600H-6.36282300-2.810920000.20565200	Н	5.62618100	-0.88517000	-1.59744200
H3.28758800-0.10223900-1.50014100C-5.33504900-2.463443000.15761800H-3.723796004.63823800-0.10407900H3.724170004.637899000.10424800H6.36270500-2.81104400-0.20522600H-6.36282300-2.810920000.20565200	С	3.60340000	-0.93355900	-0.88016500
C-5.33504900-2.463443000.15761800H-3.723796004.63823800-0.10407900H3.724170004.637899000.10424800H6.36270500-2.81104400-0.20522600H-6.36282300-2.810920000.20565200	Н	3.28758800	-0.10223900	-1.50014100
H-3.723796004.63823800-0.10407900H3.724170004.637899000.10424800H6.36270500-2.81104400-0.20522600H-6.36282300-2.810920000.20565200	С	-5.33504900	-2.46344300	0.15761800
H3.724170004.637899000.10424800H6.36270500-2.81104400-0.20522600H-6.36282300-2.810920000.20565200	Н	-3.72379600	4.63823800	-0.10407900
H6.36270500-2.81104400-0.20522600H-6.36282300-2.810920000.20565200	Н	3.72417000	4.63789900	0.10424800
Н -6.36282300 -2.81092000 0.20565200	Н	6.36270500	-2.81104400	-0.20522600
	Н	-6.36282300	-2.81092000	0.20565200

^a Absolute energy = -1477.25694141 Hartree

 Table S7 Coordinate of TPT in first singlet excited state^a

atom	Х	У	Z
S	-0.00009300	-2.35048000	-0.00120000
С	-1.27161900	-1.10217000	-0.03291200
С	-0.70386800	0.21095000	-0.06248900
С	0.70381900	0.21081100	0.06225100
С	1.27149500	-1.10214400	0.03206800
С	-2.63165600	-1.53120300	0.10344800
С	-2.98950400	-2.87700700	-0.22119200
Η	-2.24387800	-3.53344700	-0.65884900
С	-4.28396500	-3.34065100	-0.04706100
Η	-4.52496100	-4.36492000	-0.31732600
С	-4.95377800	-1.17527800	0.79444600
Η	-5.71407900	-0.51828800	1.20734000
С	-3.66660300	-0.69323000	0.62254100
Η	-3.43240300	0.31708000	0.92870400
С	-1.52886100	1.42665600	-0.21969000
С	-2.42502200	1.53734900	-1.30280000
Η	-2.49236700	0.72324000	-2.01759000
С	-3.20850100	2.67677100	-1.46782600
Η	-3.88467800	2.74477100	-2.31522600
С	-3.12944500	3.72545100	-0.54806200
С	-2.25452600	3.62375800	0.53770100
Η	-2.19277900	4.42978200	1.26331900
С	-1.46120900	2.49101300	0.70105200
Η	-0.78902200	2.41823100	1.54908700
С	1.52896300	1.42653400	0.21952800
С	2.42366900	1.53796800	1.30367600

Н	2.48996700	0.72443400	2.01922600
С	3.20719500	2.67737800	1.46868100
Н	3.88233000	2.74600300	2.31686000
С	3.12948100	3.72525900	0.54789000
С	2.25592700	3.62281000	-0.53887000
Н	2.19520300	4.42824100	-1.26523000
С	1.46261000	2.49003200	-0.70222400
Н	0.79136700	2.41661900	-1.55096100
С	2.63165400	-1.53131200	-0.10345100
С	2.98900900	-2.87728700	0.22084900
Н	2.24296000	-3.53379400	0.65767600
С	4.28353900	-3.34109500	0.04744400
Н	4.52414700	-4.36553000	0.31742700
С	5.28074200	-2.49787100	-0.45750400
С	4.95428800	-1.17548100	-0.79261600
Н	5.71499600	-0.51842000	-1.20464500
С	3.66707100	-0.69329900	-0.62138600
Н	3.43329800	0.31724200	-0.92712500
С	-5.28069400	-2.49745200	0.45895500
Н	-3.74642400	4.61039000	-0.67229500
Н	3.74646300	4.61019500	0.67214100
Н	6.29401200	-2.86412200	-0.59118700
Н	-6.29393400	-2.86359100	0.59316600

^a Absolute energy = -1477.13360240 Hartree

References:

- (1) (a) A. D. Becke, J. Chem. Phys., 1993, **98**, 5648. (b) C. Lee, W. T. Yang and R. G. Parr, Phys. Rev. B, 1988, **37**, 785.
- (2) Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- (3) (a) J. R. Reimers, J. Chem. Phys., 2001, 115, 9103. (b) Y. L. Niu, Q. Peng, C. M. Deng, X. Gao and Z. G. Shuai, J. Phys. Chem. A, 2010, 114, 7817.
- (4) Y. M. Wen, S. F. Zhu, H. F. Jiang, A. Z. Wang and Z. W. Chen, Synlett, 2011, 7,

1023.

(5) D. T. Tùng, D. T. Tuân, N. Rasool, A. Villinger, H. Reinke, C. Fischer and P. Langer, Adv. Synth. Catal., 2009, 351, 1595.