Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2017

Electronic Supporting Information

Towards Hydroxamic acid Linked Zirconium

Metal–Organic Frameworks

Carla F. Pereira,^{a,b,c} Ashlee J. Howarth,^c Nicolaas A. Vermeulen,^c Filipe A. Almeida Paz,^b João P. C. Tomé,^{a,d} Joseph T. Hupp^{c*} and Omar K. Farha^{c,e*}

^a Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal

^b Department of Chemistry & CICECO – Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal

^c Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
^dCQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
^e Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

To whom correspondence should be addressed:

*Joseph T. Hupp E-mail: <u>j-hupp@u.northwestern.edu</u>

*Omar K. Farha E-mail: <u>o-farha@northwestern.edu</u>

Fax: (847)-467-1425. Telephone: (847)-491-3504.

Table of Contents

1 – Experimental section	3
1.1 – Synthesis of benzene-1,4-dihydroxamic acid (H ₂ BDHA)	3
2 – Characterization	6
3 – Stability tests	6

1 - Experimental section

1.1 – Synthesis of benzene-1,4-dihydroxamic acid (H₂BDHA)

Figure S1 – ¹H NMR (600 MHz) spectrum of benzene-1,4-dihydroxamic acid in DMSO- d_6 .

Figure S2 – ¹³C NMR (151 MHz) spectrum of benzene-1,4-dihydroxamic acid in DMSO- d_6 .

Figure S3 – ESI+-TOF mass spectrum of benzene-1,4-dihydroxamic acid.

2- Characterization

Figure S4 – TGA data for UiO-66 and UiO-66-H₂BDHA.

3 – Stability tests

Figure S5 – (a) PXRD patterns obtained for UiO-66 (made with HCl) and UiO-66- H_2 BDHA in the evaluation of their stability at different pH.

Figure S6 – PXRD patterns obtained for defect-free UiO-66 in the evaluation of its stability at different pH.

Figure S7 – N₂ isotherms of defect-free UiO-66 obtained in the stability studies at different pH.

Table S1 -	- Brunauer-	-Emmett-	-Teller	(BET)	areas of	f the	materials	used	in tl	he stabil	ity tests	at d	lifferent	pН
	Dianaaci	Linnett	1 01101	(DDI)	areas o	1 1110	materials	abea	111 01		109 00000	ut u		P11.

Material	BET area (m²/g)								
	Original material	pH=1	pH=12						
UiO-66	1580	1150	1130						
UiO-66-H ₂ BDHA	1050	860	840						
UiO-66 (acetic acid)	1190	1360	1420						