

Supporting Information for

Palladium-catalyzed phosphonyldifluoromethylation of alkenes with bromodifluoromethylphosphonate

Zhang Feng, Yu-Lan Xiao, and Xingang Zhang*

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences,

345 Lingling Road, Shanghai 200032, China

xgzhang@mail.sioc.ac.cn

List of Contents

1)	Screens for Pd-catalyzed Heck-type reaction of Bromodifluoromethylphosphonate	with
	styrene	S3
2)	General Procedure for Pd-Catalyzed Heck-Type Reaction of Bromodifluoromethylphosph	onate
	with Alkenes.	S6
3)	Data for Compounds 3, 4.	S6
4)	Data for Compound 5.	S13
5)	Data for Compound 7	S14
6)	Inhibition Experiments for Pd-Catalyzed Cross-Coupling of 1a with 2a	. S14
7)	Mechanistic Studies	S14
8)	Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra of 3 and 4	S16
9)	Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra of 5	S41
10)	Copies of ¹ H NMR, ¹⁹ F NMR and ¹³ C NMR spectra of 7	S43

General information: ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AM400 and AM500 spectrometer. ¹⁹F NMR was recorded on a Bruker AM400 spectrometer (CFCl₃ as an external standard and low field is positive). Chemical shifts (δ) are reported in ppm, and coupling constants (J) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. NMR yield was determined by ¹⁹F NMR using fluorobenzene as an internal standard before working up the reaction.

Materials: All reagents were used as received from commercial sources, unless specified otherwise. All reagents were weighed and handled in air, and refilled with an inert atmosphere of N_2 at room temperature. DCE was distilled from CaH_2 . 1,4-Dioxane and toluene were distilled from sodium and benzophenone immediately before use.

Screening for Pd-Catalyzed Heck-Type Reaction of Bromodifluoromethylphosphonate with Styrene (Tables S1-3). To a 25 mL of Schlenk tube were added [Pd] (5-10 mol %), ligand (10-20 mol %) under air, followed by base (2.0 equiv). The mixture was then evacuated and backfilled with N₂ (3 times). Bromodifluoromethylphosphonate 1 (2 equiv), styrene 2a (0.3 mmol) and solvent (2 mL) were added subsequently. The reaction mixture was heated to 80-120 °C (oil bath). After stirring for 24 h, the reaction mixture was cooled to room temperature. The yield was determined by ¹⁹F NMR before working up. If necessary, the reaction mixture was diluted with EtOAc and filtered with a pad of cellite. The filtrate was concentrated, and the residue was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1) to give product 3a.

Table S1. Screening of Palladium Sources^a

Entry	[Pd](mol %)	Ligand (mol %)	Yield (%) ^b
1	$Pd(PhCN)_2Cl_2$ (10)	20	Nd
2	$PdCl_2$ (10)	20	Nd
3	$PdCl_2(PPh_3)_2$ (10)	20	Nd
4	$PdCl_2(dppf)$ (10)	20	Nd
5	$PdCl_2(MeCN)_2$ (10)	20	Trace
6	$[PdCl(C_3H_5)]_2(5)$	20	Nd
7	Pd(PPh ₃) ₄ (10)	20	Nd
8	$Pd_2(dba)_3(5)$	20	Nd

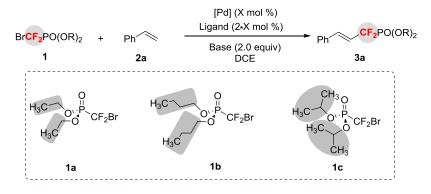

^aReaction conditions (unless otherwise specified): **2a** (0.3 mmol, 1.0 equiv), **1a** (2.0 equiv), dioxane (2 mL), 24 h. ^bDetermined by ¹⁹F NMR using fluorobenzene as an internal standard.

Table S2. Screening of Ligands^a

Entry	Ligand (20 mol%)	Yield $(\%)^b$
1	Xantphos	Trace
2	DpePhos	Trace
3	dppe	Nd
4	dppp	Nd
5	dppb	Nd
6	dppf	Trace
7	BINAP	Nd
8	JohnPhos	Nd
9	MePhos	Nd
10	DavePhos	Nd
11	XPhos	Nd
12	RuPhos	Nd
13	SPhos	Nd

^aReaction conditions (unless otherwise specified): **2a** (0.3 mmol, 1.0 equiv), **1a** (2.0 equiv), dioxane (2 mL), 24 h. ^bDetermined by ¹⁹F NMR using fluorobenzene as internal standard.

Table S3. Optimization of Palladium-Catalyzed Heck-type Reaction of Bromodifluoromethylphosphonate with Styrene. a

Entry	Substrate	[Pd](mol %)	Solvent	Ligand (mol%)	Base	3a , Yield(%) ^b
1	1a	Pd(MeCN) ₂ Cl ₂ (10)	DCE	Xantphos (20)	K_2CO_3	3aa, Trace
3	1b	$Pd(MeCN)_2Cl_2$ (10)	DCE	Xantphos (20)	K_2CO_3	3aa , 12
4	1b	$Pd(PPh_3)_4$ (10)	DCE	Xantphos (20)	K_2CO_3	3aa , 10
5	1c	$Pd(MeCN)_2Cl_2$ (10)	DCE	Xantphos (20)	K_2CO_3	3ac , 21
6	1c	$Pd(PhCN)_2Cl_2$ (10)	DCE	Xantphos (20)	K_2CO_3	3ac, 41
7	1c	PdCl ₂ (10)	DCE	Xantphos (20)	K_2CO_3	3ac , 39
8	1c	$PdCl_2(PPh_3)_2$ (10)	DCE	Xantphos (20)	K_2CO_3	3ac , 28
9	1 c	PdCl ₂ (dppf) (10)	DCE	Xantphos (20)	K_2CO_3	3ac, Trace
10	1 c	$[PdCl(C_3H_5)]_2(5)$	DCE	Xantphos (20)	K_2CO_3	3ac, Nd
11	1 c	$Pd(PPh_3)_4$ (10)	DCE	Xantphos (20)	K_2CO_3	3ac , 31
12	1c	$Pd(PhCN)_2Cl_2$ (10)	DCE	Xantphos (20)	K_3PO_4	3ac , 50
13	1c	$Pd(PhCN)_2Cl_2$ (10)	DCE	Xantphos (20)	Cs_2CO_3	3ac, Nd
14	1c	$Pd(PhCN)_2Cl_2$ (10)	DCE	Xantphos (20)	Na_2CO_3	3ac , 44
15	1c	$Pd(PhCN)_2Cl_2$ (10)	Dioxane	Xantphos (20)	K_3PO_4	3ac , 2
16	1 c	$Pd(PhCN)_2Cl_2$ (10)	toluene	Xantphos (20)	K_3PO_4	3ac , 0
17	1c	$Pd(PhCN)_2Cl_2$ (10)	DCE	DpePhos (20)	K_3PO_4	3ac , 35
18	1c	$Pd(PhCN)_2Cl_2$ (10)	DCE	dppf (20)	K_3PO_4	3ac , 22
19^{c}	1c	$Pd(PhCN)_2Cl_2$ (10)	DCE	Xantphos (20)	K_3PO_4	3ac , 47
20^d	1c	$Pd(PhCN)_2Cl_2$ (10)	DCE	Xantphos (20)	K_3PO_4	3ac , (94)
21^d	1 c	$Pd(PhCN)_2Cl_2$ (5)	DCE	Xantphos (10)	K_3PO_4	3ac, (92)
22^d	2 c	none	DCE	Xantphos (10)	K_3PO_4	3ac, Nd
23^d	2 c	$Pd(PhCN)_2Cl_2$ (5)	DCE	none	K_3PO_4	3ac, Nd

^aReaction conditions (unless otherwise specified): **2a** (0.3 mmol, 1.0 equiv), **1** (2.0 equiv), solvent (2 mL), 80 °C, 24 h. ^bDetermined by ¹⁹F NMR using fluorobenzene as internal standard (isolated yield in parentheses). ^cReaction run at 100 °C for 12 h. ^dReaction run at 120 °C for 12 h.

General Procedure for Palladium-Catalyzed Heck-type Reaction of Bromodifluoromethylphosphonate with alkenes.

To a 25 mL of Schlenk tube were added $Pd(PhCN)_2Cl_2$ (5 mol %), Xantphos (10 mol %) under air, followed by anhydrous K_2CO_3 (2.0 equiv). The mixture was then evacuated and backfilled with N_2 (3 times). Bromodifluoromethylphosphonate **1c** (2 equiv), alkene **2** (0.3 mmol) and fresh distilled DCE (2 mL) were added subsequently. The reaction mixture was heated to 120 °C (oil bath). After stirring for 12 h, the reaction was cooled to room temperature. The reaction mixture was diluted with EtOAc and filtered with a pad of cellite. The filtrate was concentrated, and the residue was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1) to give product.

(*E*)-Diisopropyl (1,1-difluoro-3-phenylallyl)phosphonate (3ac). The product (88 mg, 92% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1). 1 H NMR (400 MHz, CDCl₃) δ 7.46-7.42 (m, 2 H), 7.39-7.32 (m, 3 H), 7.06 (dtd, J = 16.4 Hz, J = 2.8 Hz, J = 2.8 Hz, J H), 6.30 (m, 1 H), 4.87 (m, 2 H), 1.38 (d, J = 6.4 Hz, 6 H), 1.35 (d, J = 6.0 Hz, 6 H). 19 F NMR (376 MHz, CDCl₃) δ -109.3 (ddd, J = 114.3 Hz, J = 12.8 Hz, J = 2.8 Hz, 2 F). 13 C NMR (101 MHz, CDCl₃) δ 136.7 (td, J = 10.6 Hz, J = 6.1 Hz), 134.4 (m), 129.4, 128.8, 127.4 (m), 119.1 (td, J = 21.1 Hz, J = 13.0 Hz), 117.2 (td, J = 258.1 Hz, J = 222.3 Hz), 73.8, 73.7, 24.2, 24.1, 23.8, 23.7. MS (EI): m/z (%) 318 (M⁺), 234, 153 (100). HRMS calcd. for $C_{15}H_{21}F_{2}O_{3}P$ (M⁺): 318.1196; Found: 318.1197. IR (thin film) v_{max} 2983, 1653 cm⁻¹.

$$\mathsf{CF_2PO}(\mathsf{O}^{/}\mathsf{Pr})_2$$

(*E*)-Diisopropyl (1,1-difluoro-3-(naphthalen-2-yl)allyl)phosphonate (3b). The product (95 mg, 86% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1). 1 H NMR (400 MHz, CDCl₃) δ 7.84-7.82 (m, 4 H), 7.62 (dd, J = 8.4 Hz, J = 1.6 Hz, 1 H), 7.52-7.48 (m, 2 H), 7.22 (dtd, J = 16.0 Hz, J = 2.8 Hz, J = 2.8 Hz, 1 H), 6.43 (m, 1 H), 4.89 (m, 2 H), 1.38 (d, J = 6.0 Hz, 6 H), 1.36 (d, J = 6.0 Hz, 6 H). 19 F NMR (376 MHz, CDCl₃) δ -109.3 (ddd, J = 114.3 Hz, J = 12.9 Hz, J = 2.8 Hz, 2 F). 13 C NMR (101 MHz, CDCl₃) δ 136.8 (td, J = 10.6 Hz, J =

6.1 Hz), 133.8, 133.3, 131.9, 128.6, 128.3, 127.7, 126.8, 126.6, 123.4, 119.3 (td, J= 21.1 Hz, J= 10.9 Hz), 117.4 (td, J= 257.9 Hz, J= 222.2 Hz), 73.9, 73.8, 24.21, 24.18, 23.8, 23.7. MS (EI): m/z (%) 368 (M⁺), 284, 203 (100). HRMS calcd. for C₁₉H₂₃F₂O₃P (M⁺): 368.1353; Found: 368.1357. IR (thin film) ν_{max} 2983, 1653cm⁻¹.

(*E*)-diisopropyl (3-(4-(tert-butyl)phenyl)-1,1-difluoroallyl)phosphonate (3c). The product (107 mg, 95% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1). 1 H NMR (400 MHz, CDCl₃) δ 7.39 (s, 4 H), 6.38 (dtd, J = 16.0 Hz, J = 2.8 Hz, J = 2.8 Hz, 1 H), 6.25 (m, 1 H), 4.86 (m, 2 H), 1.37 (d, J = 6.4 Hz, 6 H), 1.34 (d, J = 6.0 Hz, 6 H), 1.30 (s, 9 H). 19 F NMR (376 MHz, CDCl₃) δ -109.9 (ddd, J = 115.1 Hz, J = 12.9 Hz, J = 2.9 Hz, 2 F). 13 C NMR (101 MHz, CDCl₃) δ 152.8, 136.6 (td, J = 10.6 Hz, J = 6.2 Hz), 131.8, 127.2, 125.7, 118.2 (td, J = 21.6 Hz, J = 13.4 Hz), 117.4 (td, J = 259.2 Hz, J = 221.8 Hz), 73.73, 73.66, 34.8, 31.2, 24.2, 24.1, 23.8, 23.7. MS (EI): m/z (%) 374 (M⁺), 209, 57 (100). HRMS calcd. for $C_{19}H_{29}F_{2}O_{3}P$ (M⁺): 374.1822; Found: 374.1819. IR (thin film) v_{max} 2966, 1653, 1509 cm⁻¹.

(*E*)-diisopropyl (3-(4-(tert-butyl)phenyl)-1,1-difluoroallyl)phosphonate (3d). The product (100 mg, 96% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.7 Hz, 2 H), 6.99 (dtd, J = 16.4 Hz, J = 2.8 Hz, J = 2.8 Hz, 1 H), 6.88 (d, J = 8.7 Hz, 2 H), 6.15 (m, 1 H), 4.86 (m, 2 H), 3.82 (s, 3 H), 1.36 (d, J = 6.0 Hz, 6 H), 1.33 (d, J = 6.4 Hz, 6 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -108.7 (ddd, J = 115.7 Hz, J = 12.9 Hz, J = 2.9 Hz, 2 F). ¹³C NMR (101 MHz, CDCl₃) δ 160.6, 136.2 (td, J = 10.7 Hz, J = 6.1 Hz), 128.8, 127.3, 117.5 (td, J = 259.4 Hz, J = 223.1 Hz), 116.6 (td, J = 21.2 Hz, J = 13.0 Hz), 114.2, 73.7, 73.6, 55.3, 24.19, 24.16, 23.73, 23.68. MS (EI): m/z (%) 348 (M⁺), 183 (100). HRMS calcd. for C₁₆H₂₃F₂O₄P (M⁺): 348.1302; Found: 348.1307. IR (thin film) v_{max} 2983, 1653, 1607 cm⁻¹.

$$\mathsf{Ph}_2\mathsf{N} \qquad \mathsf{CF}_2\mathsf{PO}(\mathsf{O}^{\mathsf{i}}\mathsf{Pr})_2$$

(*E*)-Diisopropyl (3-(4-(diphenylamino)phenyl)-1,1-difluoroallyl)phosphonate (3e). The product (135 mg, 93% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.23 (m, 7 H), 7.12-7.10 (m, 3 H), 7.08-7.05 (m, 2 H), 7.02-6.95 (m, 3 H), 6.15 (m, 1 H), 4.87 (m, 2 H), 1.38 (d, J = 6.4 Hz, 6 H), 1.36 (d, J = 6.4 Hz, 6 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -108.5 (ddd, J = 116.2 Hz, J = 13.0 Hz, J = 2.6 Hz, 2 F). ¹³C NMR (101 MHz, CDCl₃) δ 148.9, 147.1, 136.2 (td, J = 10.5 Hz, J = 6.0 Hz), 129.4, 128.3, 127.9, 124.9, 123.6, 122.4, 117.5 (td, J = 259.4 Hz, J = 223.2 Hz), 116.5 (td, J = 21.0 Hz, J = 12.6 Hz), 73.7, 73.6, 24.2, 24.17, 23.8, 23.7. MS (EI): m/z (%) 485 (M⁺), 320 (100). HRMS calcd. for C₂₇H₃₀F₂O₃NP (M⁺): 485.1931; Found: 485.1929. IR (thin film) v_{max} 2982, 1647, 1592, 1508 cm⁻¹.

$$CF_2PO(O^iPr)_2$$

(*E*)-Diisopropyl (3-(4-cyanophenyl)-1,1-difluoroallyl)phosphonate (3f). The product (80 mg, 78% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1). 1 H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.4 Hz, 2 H), 7.53 (d, J = 8.4 Hz, 2 H), 7.05 (m, 1 H), 6.39 (m, 1 H), 4.86 (m, 2 H), 1.37 (d, J = 6.4 Hz, 6 H), 1.33 (d, J = 6.0 Hz, 6 H). 19 F NMR (376 MHz, CDCl₃) δ -110.3 (ddd, J = 111.6 Hz, J = 12.5 Hz, J = 2.6 Hz, 2 F). 13 C NMR (101 MHz, CDCl₃) δ 138.7, 134.9 (td, J = 10.6 Hz, J = 5.8 Hz), 132.6, 127.9, 122.9 (td, J = 21.4 Hz, J = 12.8 Hz), 118.4, 116.7 (td, J = 260.1 Hz, J = 221.3 Hz), 112.7, 74.1, 74.0, 24.12, 24.08, 23.72, 23.67. MS (EI): m/z (%) 343 (M⁺), 259, 179, 123 (100). HRMS calcd. for C₁₆H₂₀F₂O₃PN (M⁺): 343.1149; Found: 343.1154. IR (thin film) v_{max} 2984, 2936, 2228, 1654, 1507 cm⁻¹.

$$\mathsf{CF_2PO}(\mathsf{O}^{i}\mathsf{Pr})_2$$

(*E*)-Diisopropyl (1,1-difluoro-3-(4-nitrophenyl)allyl)phosphonate (3g). The product (60 mg, 55% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1) 1 H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.7 Hz, 2H), 7.60 (d, J = 8.7 Hz, 2H), 7.11 (dtd, J = 16.4, J = 12.4, J = 2.3 Hz, 1H), 6.45 (m, 1H), 4.86 (m, 2 H), 1.38 (d, J = 6.0 Hz, 6 H), 1.35 (d, J = 6.0 Hz,

6 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -110.3 (ddd, J = 111.2 Hz, J = 12.4 Hz, J = 2.8 Hz, 2 F). ¹³C NMR (101 MHz, CDCl₃) δ 148.1, 140.6, 134.5 (td, J = 10.4 Hz, J = 5.7 Hz), 128.1, 124.2, 123.7 (td, J = 21.4 Hz, J = 13.0 Hz), 116.7 (td, J = 260.2 Hz, J = 221.1 Hz), 74.2, 74.1, 24.2, 24.1, 23.8, 23.7. MS (EI): m/z (%) 363 (M⁺), 199, 123 (100). HRMS calcd. for C₁₅H₂₀F₂O₅PN (M⁺): 363.1047; Found: 363.1049. IR (thin film) $ν_{max}$ 2983, 1517, 1346 cm⁻¹.

$$\mathsf{CF_2PO}(\mathsf{O'Pr})_2$$

$$\mathsf{MeO_2C}$$

(*E*)-methyl 4-(3-(diisopropoxyphosphoryl)-3,3-difluoroprop-1-en-1-yl)benzoate (3h). The product (79 mg, 70% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1). 1 H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 8.4 Hz, 2 H), 7.50 (d, J = 8.4 Hz, 2 H), 7.07 (m, 1 H), 6.38 (m, 1 H), 4.86 (m, 2 H), 3.91 (s, 3 H), 1.36 (d, J = 6.4 Hz, 6 H), 1.33 (d, J = 6.4 Hz, 6 H). 19 F NMR (376 MHz, CDCl₃) δ -109.9 (ddd, J = 112.8 Hz, J = 12.8 Hz, J = 2.6 Hz, 2 F). 13 C NMR (101 MHz, CDCl₃) δ 166.5, 138.7, 135.7 (td, J = 10.4 Hz, J = 6.0 Hz), 130.7, 130.1, 127.3, 121.6 (td, J = 21.2 Hz, J = 13.0 Hz), 117.0 (td, J = 258.1 Hz, J = 220.4 Hz), 74.0, 73.9, 52.2, 24.2, 24.1, 23.71, 23.67. MS (EI): m/z (%) 376 (M⁺), 334, 292 (100). HRMS calcd. for C₁₇H₂₃F₂O₅P (M⁺): 376.1251; Found: 376.1248. IR (thin film) v_{max} 2984, 1723, 1653, 1609 cm⁻¹.

(*E*)-diisopropyl (1,1-difluoro-3-(3-formylphenyl)allyl)phosphonate (3i). The product (78 mg, 75% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 2:1). This compound is known.¹ H NMR (400 MHz, CDCl₃) δ 10.03 (s, 1 H), 7.95 (s, 1 H), 7.84 (d, J = 7.6 Hz, 1 H), 7.70 (d, J = 8.0 Hz, 1 H), 7.55 (t, J = 7.6 Hz, 1 H), 7.10 (m, 1 H), 6.39 (m, 1 H), 4.87 (m, 2 H), 1.37 (d, J = 6.0 Hz, 6 H), 1.34 (d, J = 6.4 Hz, 6 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -109.9 (ddd, J = 113.0 Hz, J = 12.4 Hz, J = 2.6 Hz, 2 F). ¹³C NMR (101 MHz, CDCl₃) δ 191.8, 136.9, 135.5, 135.3(td, J = 10.4 Hz, J = 6.1 Hz), 133.0, 130.5, 129.5, 128.1, 121.1 (td, J = 21.6 Hz, J = 13.0 Hz), 116.9 (td, J = 259.8 Hz, J = 221.8 Hz), 74.0, 73.9, 24.14, 24.10, 23.73, 23.67. MS (EI): m/z (%) 346 (M⁺), 262, 222, 133 (100). HRMS calcd. for C₁₆H₂₁F₂O₄P (M⁺): 346.1146; Found: 346.1148. IR

(thin film) v_{max} 3487, 2984, 1701, 1654 cm⁻¹.

Diisopropyl (**1,1-difluoro-3-phenylbut-3-en-1-yl)phosphonate** (**3j**). The product (61 mg, 61% yield) was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1). ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.78 (m, 4 H), 7.60 (dd, J = 8.6 Hz, J = 1.9 Hz, 1 H), 7.49-7.43 (m, 2 H), 5.76 (s, 1 H), 5.42 (s, 1 H), 4.85 (m, 2 H), 3.40 (td, J = 20.0 Hz, J = 3.5 Hz, 2 H), 1.36 (d, J = 6.4 Hz, 6 H), 1.35 (d, J = 6.8 Hz, 6 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -111.9 (dt, J = 107.2 Hz, J = 19.9 Hz, 2 F). ¹³C NMR (101 MHz, CDCl₃) δ 138.3 (t, J = 2.9 Hz), 138.2, 133.3, 132.8, 128.3, 127.8, 127.5, 126.2, 125.9, 125.1, 124.4, 119.8, 119.3 (td, J = 261.8 Hz, J = 217.0 Hz), 73.7, 73.6, 38.7 (td, J = 20.7 Hz, J = 15.6 Hz), 24.2, 24.1, 23.8, 23.7. MS (EI): m/z (%) 382 (M⁺), 340, 298 (100). HRMS calcd. for $C_{20}H_{25}F_{2}O_{3}P$ (M⁺): 382.1509; Found: 382.1515. IR (thin film) v_{max} 3057, 2982, 1623 cm⁻¹.

Diisopropyl (**difluoro**(**1H-inden-2-yl)methyl**)**phosphonate** (**3k**). The product (75 mg, 76% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1). 1 H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 13.2 Hz, 1 H), 7.46 (d, J = 13.2 Hz, 1 H), 7.33-7.26 (m, 2 H), 7.26 (m, 1 H), 4.85 (m, 2 H), 3.69 (s, 2 H), 1.37 (d, J = 6.0 Hz, 6 H), 1.33 (d, J = 6.0 Hz, 6 H). 19 F NMR (376 MHz, CDCl₃) δ -105.6 (dd, J = 115.4 Hz, J = 1.9 Hz, 2 F). 13 C NMR (101 MHz, CDCl₃) δ 143.8, 142.7, 138.4 (td, J = 22.7 Hz, J = 13.2 Hz), 134.3 (td, J = 8.3 Hz, J = 5.5 Hz), 126.7, 126.3, 124.0, 122.4, 117.3 (td, J = 257.9 Hz, J = 222.5 Hz), 73.9, 73.8, 38.2, 24.2, 24.1, 23.71, 23.66. MS (EI): m/z (%) 330 (M⁺), 226, 164 (100). HRMS calcd. for $C_{16}H_{21}F_{2}O_{3}P$ (M⁺): 330.1196; Found: 330.1194. IR (thin film) v_{max} 2983, 1463cm⁻¹.

(*E*)-Diisopropyl (3-(3,4-dihydronaphthalen-2-yl)-1,1-difluoroallyl)phosphonate (3l). The product (98 mg, 95% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1). 1 H NMR (400 MHz, CDCl₃) δ 7.22-7.17 (m, 2 H), 7.16-7.12 (m, 2 H), 6.88 (s, 1 H), 4.86 (m, 2 H), 2.87 (t, J = 8.4 Hz, 2 H), 2.53 (t, J = 8.4 Hz, 2 H), 1.37 (d, J = 6.4 Hz, 6H), 1.34 (d, J = 6.0 Hz, 6 H). 19 F NMR (376 MHz, CDCl₃) δ -112.1 (d, J = 116.3 Hz, 2 F). 13 C NMR (101 MHz, CDCl₃) δ 135.7, 132.2, 131.4 (td, J = 20.1 Hz, J = 12.4 Hz), 129.2 (td, J = 10.3 Hz, J = 6.0 Hz), 128.6, 127.5, 126.7, 118.1 (td, J = 260.1 Hz, J = 219.4 Hz), 73.7, 73.6, 27.5, 24.21, 24.18, 23.73, 23.68, 21.9. MS (EI): m/z (%) 344 (M⁺), 260, 240, 179 (100). HRMS calcd. for $C_{17}H_{23}F_{2}O_{3}P$ (M⁺): 344.1353; Found: 344.1355. IR (thin film) v_{max} 2983, 1455, 1387 cm⁻¹.

Diisopropyl ((2*E*,4*E*)-1,1-difluoro-5-phenylpenta-2,4-dien-1-yl)phosphonate (3m). The product (67 mg, 65% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1). 1 H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 7.2 Hz, 2 H), 7.33 (t, J = 7.2 Hz, 2 H), 7.29-7.27 (m, 1 H), 6.88-6.73 (m, 3 H), 5.95-5.84 (m, 1 H), 4.86 (m, 2 H), 1.38 (d, J = 6.4 Hz, 6 H), 1.35 (d, J = 6.4 Hz, 6 H). 19 F NMR (376 MHz, CDCl₃) δ -109.16 (dd, J = 114.8 Hz, 13.7 Hz, 2 F). 13 C NMR (101 MHz, CDCl₃) δ 137.7 (dt, J = 2.4 Hz, J = 2.5 Hz), 136.8 (dt, J = 10.8 Hz, J = 6.2 Hz), 136.1, 128.7, 128.6, 126.9, 126.1 (dt, J = 2.3 Hz, J = 2.1 Hz), 121.9 (td, J = 20.9 Hz, J = 12.5 Hz), 171.1 (td, J = 259.1 Hz, J = 222.7 Hz), 73.8, 73.7, 24.2, 24.1, 23.8, 23.7. MS (EI): m/z (%) 344 (M⁺), 199, 152, 123 (100). HRMS calcd. for $C_{17}H_{23}F_{2}O_{3}P$ (M⁺): 344.1353; Found: 344.1352. IR (thin film) v_{max} 2984, 1641 cm⁻¹.

(E)-Diisopropyl (1,1-difluoro-3-(4-methylthiazol-5-yl)allyl)phosphonate (3n). The product (46 mg, 45% yield) as a colorless oil was purified with silica gel chromatography (Petroleum

ether/EtOAc = 3:1). H NMR (400 MHz, CDCl₃) δ 8.66 (s, 1 H), 7.18 (dtd, J = 16.1 Hz, J = 3.2 Hz, J = 2.4 Hz, 1 H), 6.03 (m, 1 H), 4.87 (m, 2 H), 2.51 (s, 3 H), 1.38 (d, J = 6.0 Hz, 6 H), 1.35 (d, J = 6.4 Hz, 6 H). Hz, 6 H). Hz, 6 Hz, 6 Hz, 6 Hz, 6 Hz, 6 Hz, 6 Hz, 7 = 2.0 Hz, 2 F). Hz, 6 Hz, 6 Hz, 7 = 2.0 Hz, 6 Hz, 7 = 2.0 Hz, 2 F). Hz, 6 Hz, 7 = 2.0 Hz, 6 Hz, 7 = 2.0 Hz, 2 F). Hz, 7 = 2.0 Hz, 6 Hz, 7 = 2.0 Hz, 7 = 2.0 Hz, 2 F). Hz, 7 = 2.0 Hz,

(*E*)-Diisopropyl (1,1-difluoro-3-(2-oxopyrrolidin-1-yl)allyl)phosphonate (3o). The product (74 mg, 76% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 3:1). 1 H NMR (400 MHz, CDCl₃) δ 7.50 (m, 1 H), 5.05 (m, 1 H), 4.82 (m, 2 H), 3.54 (t, J = 7.2 Hz, 2 H), 2.51 (t, J = 8.4 Hz, 2 H), 2.14 (m, 2 H), 1.34 (d, J = 6.4 Hz, 6 H), 1.32 (d, J = 6.0 Hz, 6 H). 19 F NMR (376 MHz, CDCl₃) δ -106.6 (ddd, J = 117.7 Hz, J = 12.4 Hz, J = 1.9 Hz, 2 F). 13 C NMR (101 MHz, CDCl₃) δ 173.9, 130.1(td, J = 11.8 Hz, J = 6.2 Hz), 117.4 (td, J = 259.6 Hz, J = 227.1 Hz), 101.1 (td, J = 22.3 Hz, J = 14.2 Hz), 73.9, 73.8, 44.9, 30.9, 24.10, 24.07, 23.70, 23.65, 17.4. MS (EI): m/z (%) 325 (M⁺), 160 (100). HRMS calcd. for $C_{13}H_{22}F_{2}O_{4}PN$ (M⁺): 325.1255; Found: 325.1253. IR (thin film) v_{max} 2984, 1723, 1655 cm⁻¹.

Diisopropyl (**difluoro**(2-oxo-2H-chromen-3-yl)methyl)phosphonate (3p). The product (49 mg, 45% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 2:1). H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1 H), 7.61 (t, J = 7.9 Hz, 1 H), 7.57 (d, J = 7.7 Hz, 1 H), 7.36-7.30 (m, 2 H), 4.92 (m, 2 H), 1.39 (d, J = 5.6 Hz, 6 H), 1.37 (d, J = 5.6 Hz, 6 H). HRMR (376 MHz, CDCl₃) δ -108.9 (d, J = 109.1 Hz, 2 F). CNMR (101 MHz, CDCl₃) δ 156.2 (m), 154.5, 143.8 (td, J = 8.2 Hz, J = 3.0 Hz), 133.5, 129.2, 124.8, 120.7 (td, J = 22.5 Hz, J = 13.8 Hz), 117.7, 116.7, 116.1 (td, J = 264.3 Hz, J = 219.4 Hz), 74.7, 74.6, 24.2, 24.1, 23.7, 23.6. MS (EI): m/z (%) 360 (M⁺), 276, 196 (100). HRMS calcd. for C₁₆H₁₉F₂O₅P (M⁺): 360.0938; Found: 360.0935. IR (thin film)

 v_{max} 2984, 1723, 1653, 1609 cm⁻¹.

Diisopropyl (**difluoro**(**1-methyl-2-oxo-1,2-dihydroquinolin-3-yl**)**methyl**)**phosphonate** (**3q**). The product (50 mg, 45%) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1 H), 7.65-7.62 (m, 2 H), 7.35 (d, J = 8.8 Hz, 1 H), 7.24 (m, 1 H), 4.94 (m, 2 H), 3.73 (s, 3 H), 1.38 (d, J = 6.8 Hz, 6 H), 1.36 (d, J = 6.8 Hz, 6 H). ¹⁹F NMR (376 MHz, CDCl₃) δ -107.3 (d, J = 109.2 Hz, 2 F). ¹³C NMR (101 MHz, CDCl₃) δ 158.5 (m), 140.7, 139.1 (td, J = 8.8 Hz, J = 3.6 Hz), 132.2, 130.1, 128.1 (td, J = 10.2 Hz, J = 6.8 Hz), 122.4, 118.8, 117.2 (td, J = 263.3 Hz, J = 217.6 Hz), 114.1, 74.1, 74.0, 29.4, 24.3, 24.2, 23.7, 23.6. MS (EI): m/z (%) 373 (M⁺), 272, 209 (100). HRMS calcd. for C₁₇H₂₂F₂O₄PN (M⁺): 373.1255; Found: 373.1253.

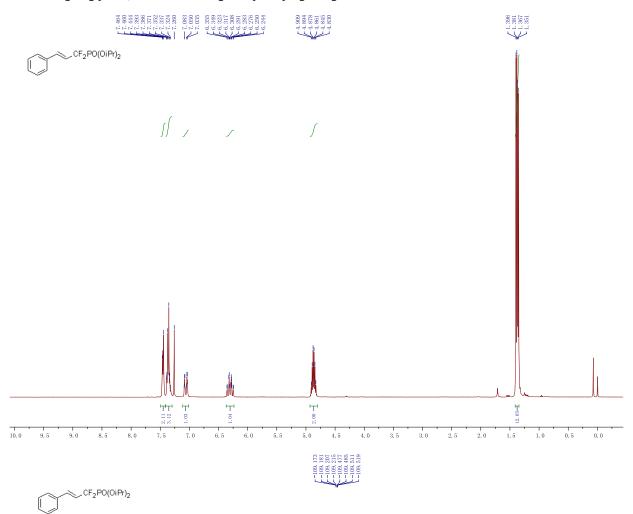
Diisopropyl((*E*)-1,1-difluoro-3-((8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-de cahydro-6H-cyclopenta[*a*]phenanthren-3-yl)allyl)phosphonate (5). The product (114 mg, 77% yield) was purified with silica gel chromatography (Petroleum ether/EtOAc = 5:1). 1 H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 7.6 Hz, 1 H), 7.23 (d, *J* = 7.6 Hz, 1 H), 7.18 (s, 1 H), 6.99 (m, 1 H), 6.24 (m, 1 H), 4.84 (m, 2 H), 2.91 (m, 2 H), 2.49 (dd, *J* = 10.0 Hz, 9.2 Hz, 1 H), 2.42-2.40 (m, 1 H), 2.29 (m, 1 H), 2.18-2.11 (m, 1 H), 2.09-2.01 (m, 2 H), 1.97-1.95 (m, 1 H), 1.65-1.58 (m, 2 H), 1.55-1.47 (m, 3 H), 1.43-1.42 (m, 1 H), 1.35 (d, *J* = 6.0 Hz, 6 H), 1.32 (d, *J* = 6.0 Hz, 6 H). 19 F NMR (376 MHz, CDCl₃) δ -109.1 (ddd, *J* = 114.8 Hz, *J* = 12.8 Hz, *J* = 1.9 Hz, 2 F). 13 C NMR (101 MHz, CDCl₃) δ 220.7, 141.4, 137.0, 136.6 (td, *J* = 10.3 Hz, *J* = 6.1 Hz), 132.5, 128.1, 125.8, 124.8, 118.3 (td, *J* = 21.1 Hz, *J* = 12.8 Hz), 117.4 (td, *J* = 257.8 Hz, *J* = 221.5 Hz), 73.8, 73.7, 50.5, 47.9, 44.5, 38.0, 35.8, 31.6, 29.3, 26.3, 25.7, 24.2, 24.1, 23.8, 23.7, 21.6, 13.8. IR (thin film) v_{max} 2982, 2933, 1739, 1653 cm⁻¹. MS (EI): m/z (%) 494 (M⁺), 401, 329 (100). HRMS calcd. for C₂₇H₃₇O₄F₂P:

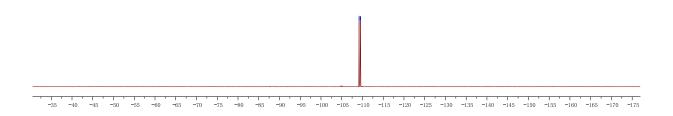
494.2398; Found: 494.2403.

Inhibition Experiments for Pd-Catalyzed Cross-Coupling of 1c with 2a.

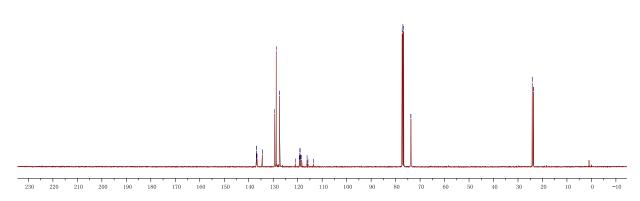
Entry	Additive (equiv)	3ac Yield(%) ^a	
1	Hydroquinone (0.2)	33	
2	1,4-dinitrobenzene (0.2)	38	
3	none	(92)	

General Procedure: To a 25 mL of Schlenk tube were added PdCl₂(MeCN)₂ (5 mol %), Xantphos (10 mol %), additive (0.2 equiv) under air, followed by K₃PO₄ (2.0 equiv). The mixture was then evacuated and backfilled with N₂ (3 times). Bromodifluoromethylphosphonate **1c** (2 equiv), styrene **2a** (0.3 mmol) and fresh distilled DCE (2 mL) were added subsequently. The reaction mixture was heated to 120 °C (oil bath). After stirring for 12 h, the reaction was cooled to room temperature and fluorobenzene (0.3 mmol) was added. The yield was determined by ¹⁹F NMR.

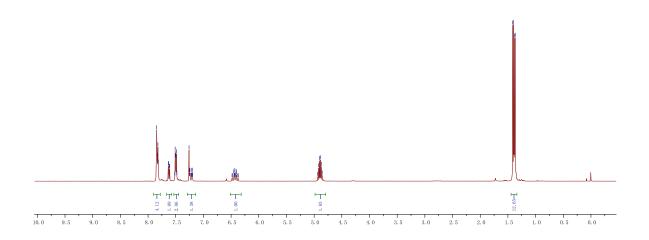

Mechanistic Studies

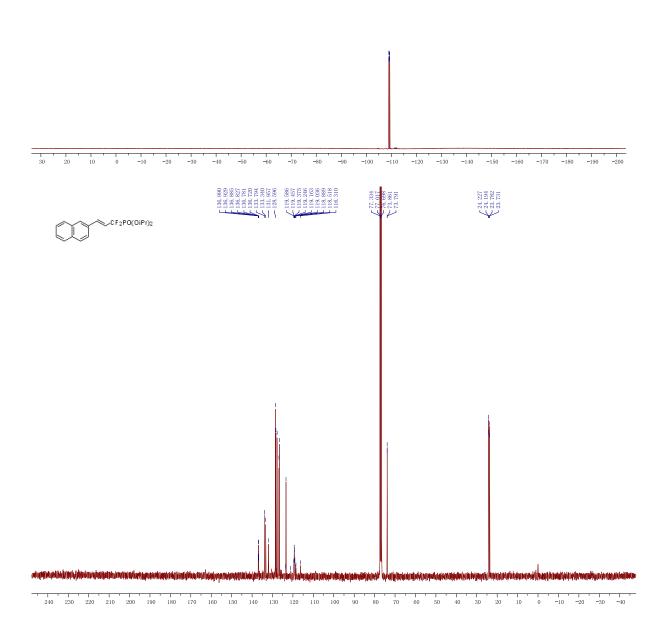

To a 25 mL of Schlenk tube were added $PdCl_2(PhCN)_2$ (5 mol %), Xantphos (10 mol %) under air, followed by by K_3PO_4 (2.0 equiv). The mixture was then evacuated and backfilled with N_2 (3 times). Bromodifluoromethylphosphonate **1c** (2 equiv), alkene **6** (0.3 mmol) and fresh distilled DCE (2 mL) were added subsequently. The reaction mixture was heated to 120 °C (oil bath). After stirring for 12 h, the reaction was cooled to room temperature. The reaction mixture was diluted with EtOAc and filtered with a pad of cellite. The filtrate was concentrated, and the residue was purified with silica


gel chromatography (Petroleum ether/EtOAc = 3:1) to compound **7** (56 mg, 52% yield) as a colorless oil was purified with silica gel chromatography (Petroleum ether/EtOAc = 2:1). 1 H NMR (400 MHz, CDCl₃) δ 7.26-7.24 (m, 1 H), 7.19-7.15 (m, 1 H), 7.12-7.10 (m, 2 H), 6.09 (t, J = 4.4 Hz, 1 H), 4.92-4.81 (m, 2 H), 3.21 (td, J = 20.4 Hz, J = 3.2 Hz, 2 H), 2.76 (t, J = 8.2 Hz, 2 H), 2.34-2.29 (m, 2 H), 1.36 (d, J = 6.4 Hz, 6 H), 1.35 (d, J = 6.4 Hz, 6 H). 19 F NMR (376 MHz, CDCl₃) δ -111.9 (dt, J = 108.7 Hz, J = 20.0 Hz, 2 F). 13 C NMR (101.0 MHz, CDCl₃) δ 136.1, 134.6, 132.1, 127.4, 126.9, 126.2, 123.3 (t, J = 3.1 Hz), 119.3 (td, J = 262.3 Hz, J = 217.6 Hz), 73.63, 73.56, 36.1 (dt, J = 21.1 Hz, J = 15.6 Hz), 28.0, 24.10, 24.06, 23.73, 23.68, 23.3. IR (thin film) v_{max} 1239 cm $^{-1}$ (P=O). MS (EI): m/z (%) 358 (M $^{+}$), 274 (100). HRMS: Calculated for $C_{18}H_{25}F_{2}O_{3}P$: 358.1509; Found: 358.1506.

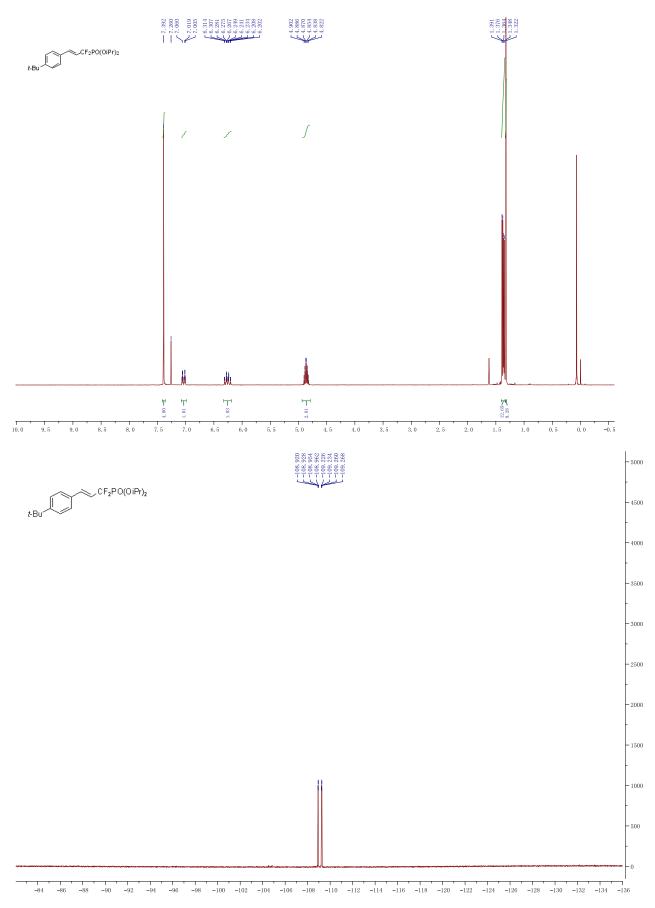

To a 25 mL of Schlenk tube were added PdCl₂(PhCN)₂ (5 mol %), Xantphos (10 mol %) under air. The mixture was then evacuated and backfilled with N₂ (3 times). Bromodifluoromethylphosphonate **1c** (2 equiv), alkene **2a** (0.3 mmol) and fresh distilled DCE (2 mL) were added subsequently. The reaction mixture was heated to 120 °C (oil bath). After stirring for 12 h, the reaction was cooled to room temperature, and fluorobenzene (0.3 mmol) was added. The yield was determined by ¹⁹F NMR.

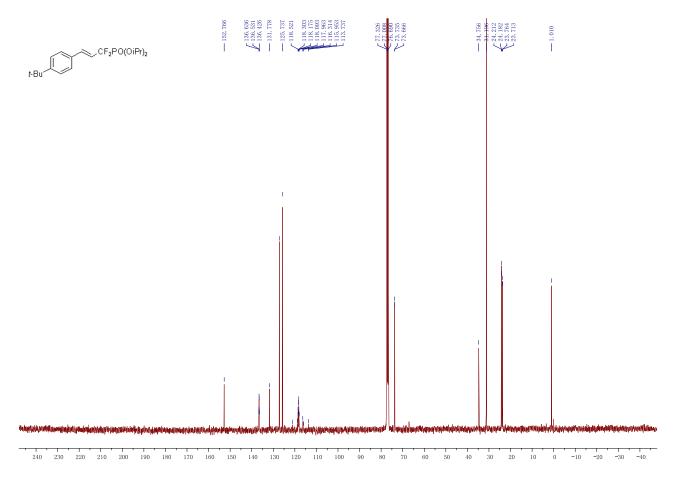
(E)-Diisopropyl (1,1-difluoro-3-phenylallyl)phosphonate (3ac).

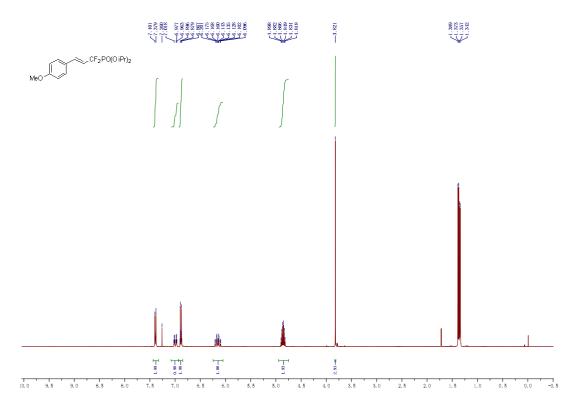




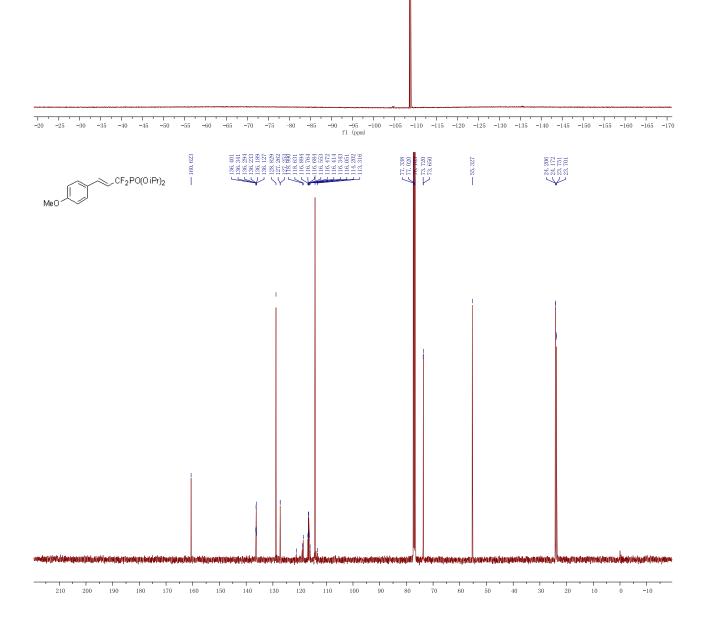
$(E)\hbox{-}Diisopropyl\ (1,1\hbox{-}difluoro\hbox{-}3\hbox{-}(naphthalen\hbox{-}2\hbox{-}yl)allyl) phosphonate\ (3b).}$

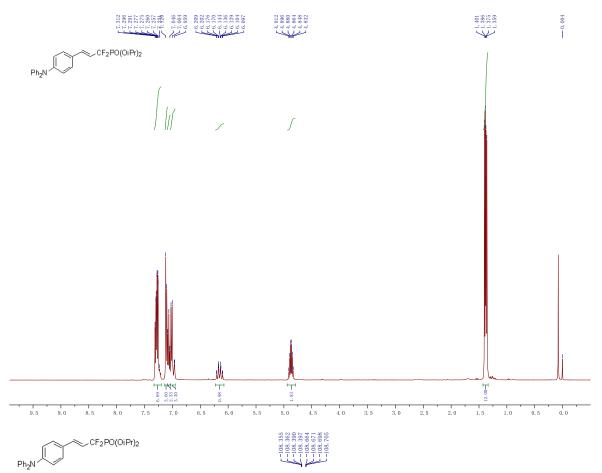


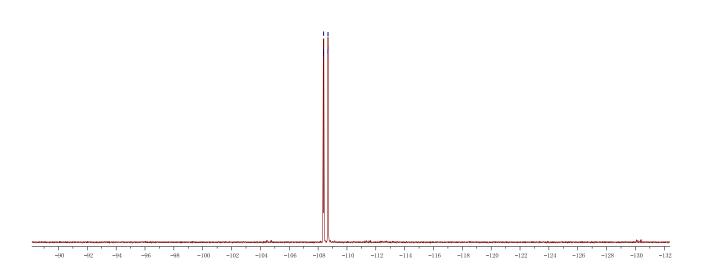


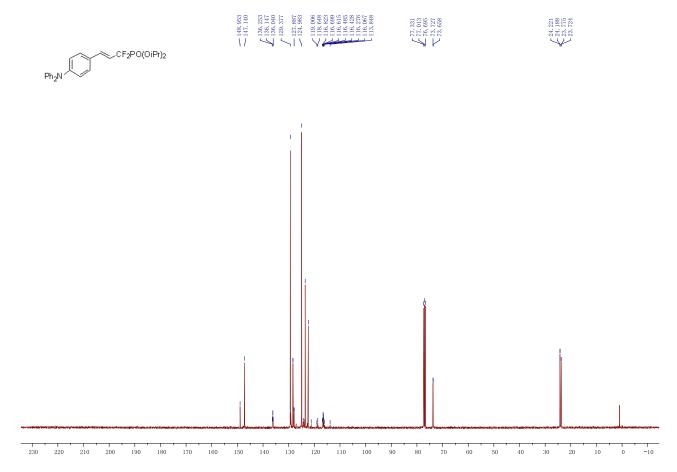


(E)-diisopropyl (3-(4-(tert-butyl)phenyl)-1,1-difluoroallyl)phosphonate (3c).

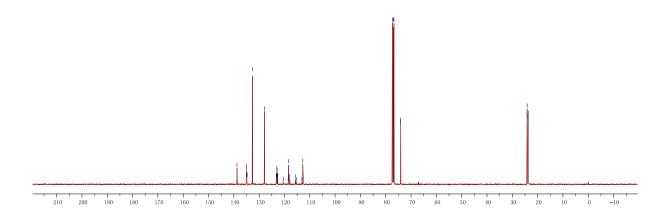


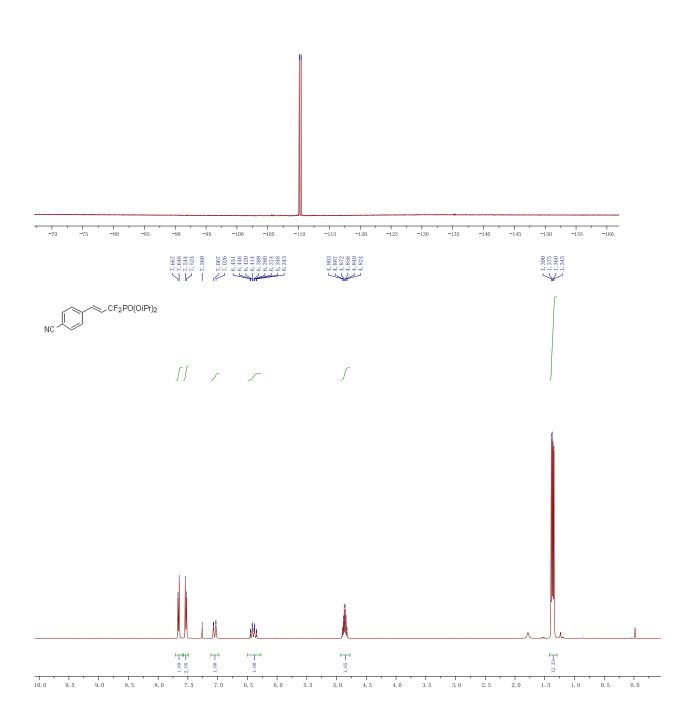

(E)-diisopropyl (3-(4-(tert-butyl)phenyl)-1,1-difluoroallyl)phosphonate (3d).



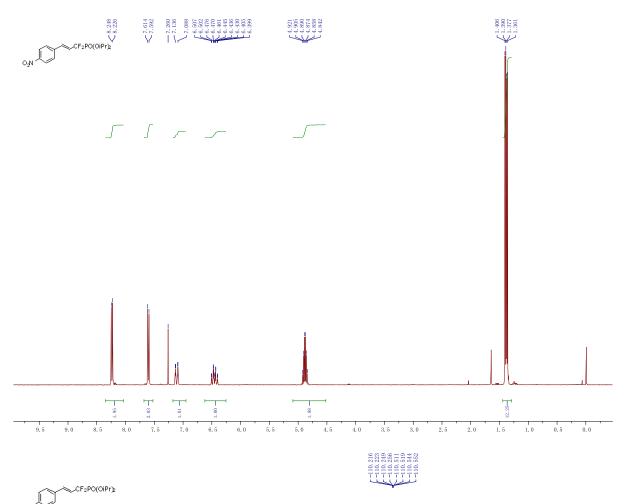


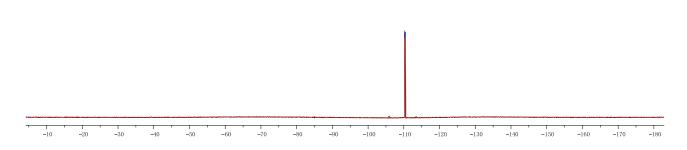
(E)-Diisopropyl (3-(4-(diphenylamino)phenyl)-1,1-difluoroallyl)phosphonate (3e).

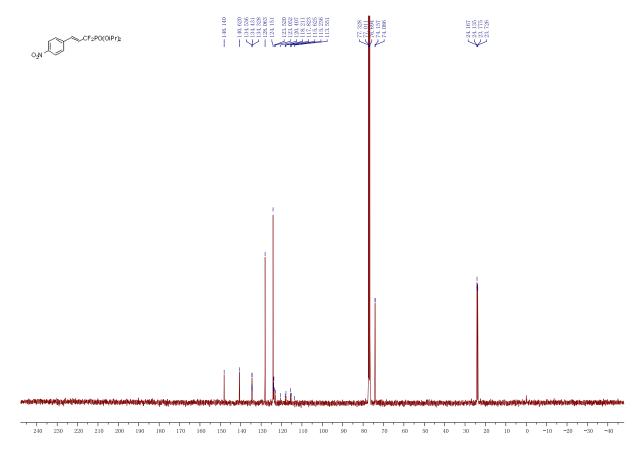


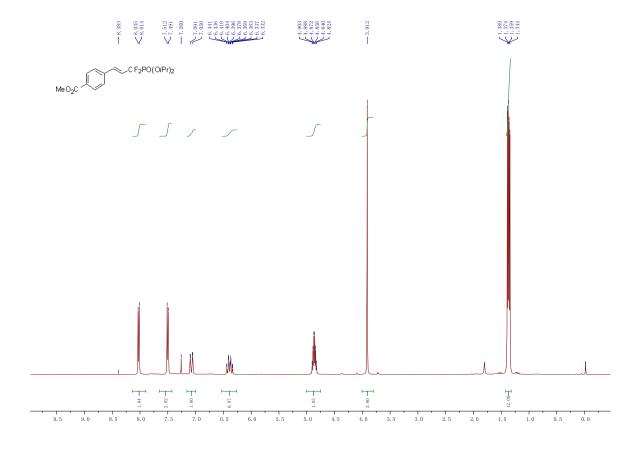


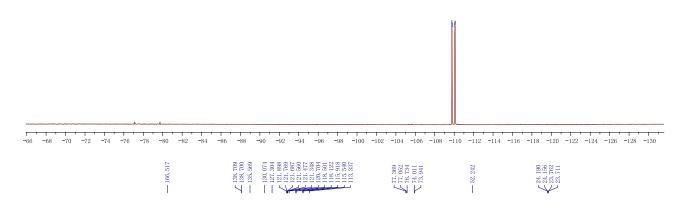
$(E)\hbox{-} \textbf{Diisopropyl} \ (3\hbox{-}(4\hbox{-} cyanophenyl)\hbox{-} \textbf{1,1-} difluoroallyl) \textbf{phosphonate} \ (3f).$

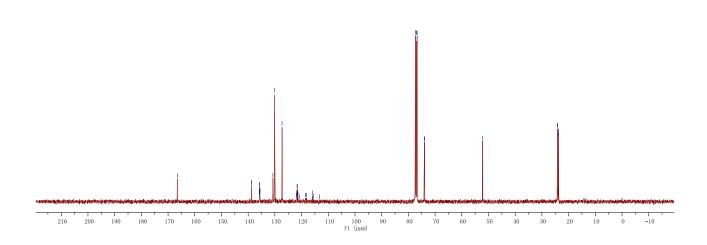




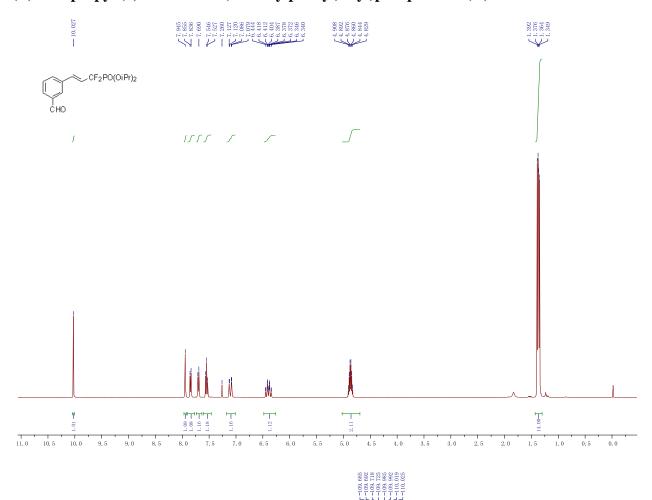


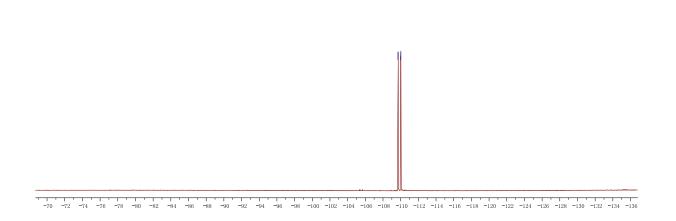

(E)-Diisopropyl (1,1-difluoro-3-(4-nitrophenyl)allyl)phosphonate (3g).

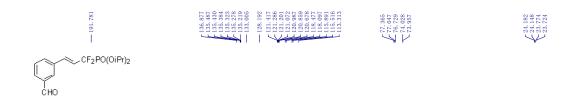


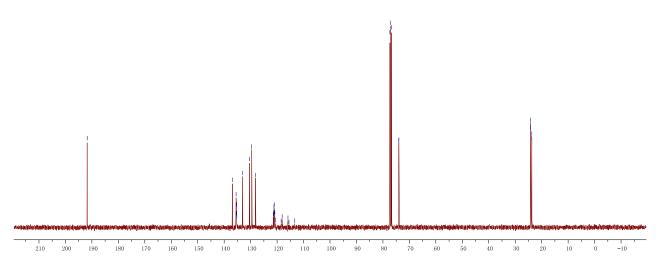


(E)-methyl 4-(3-(diisopropoxyphosphoryl)-3,3-difluoroprop-1-en-1-yl)benzoate (3h).

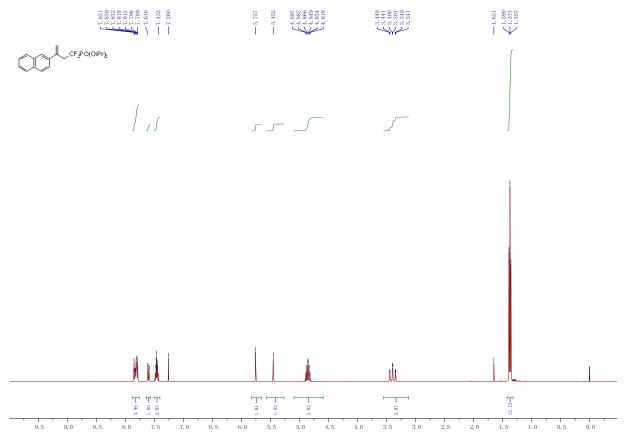


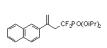


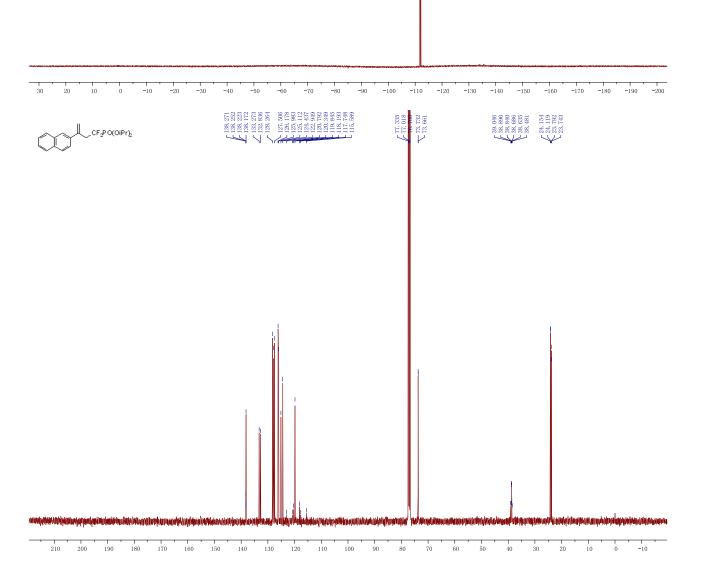

(E)-diisopropyl (1,1-difluoro-3-(3-formylphenyl)allyl)phosphonate (3i)


CF₂PO(OiPr)₂

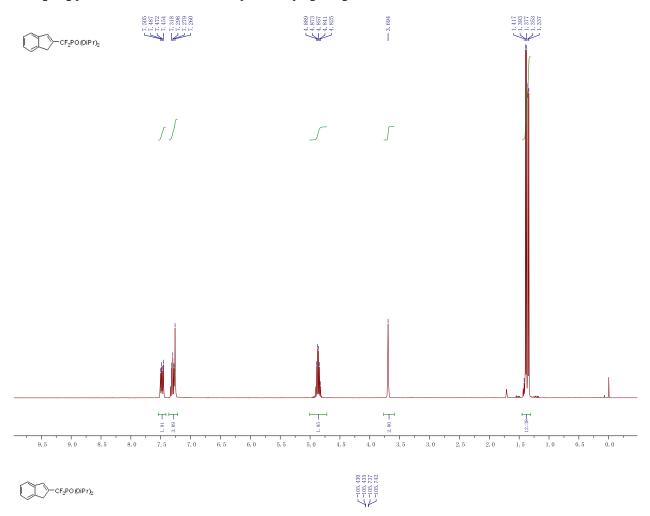
сно

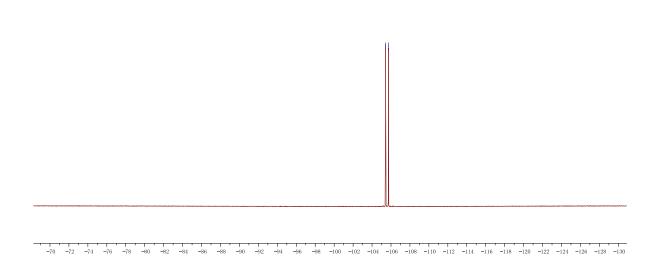


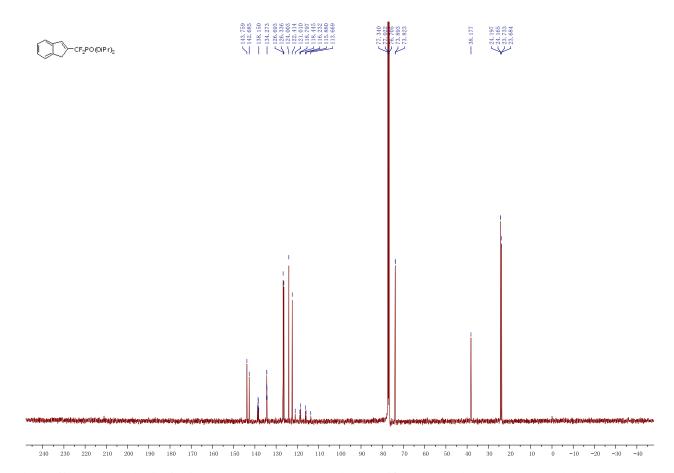


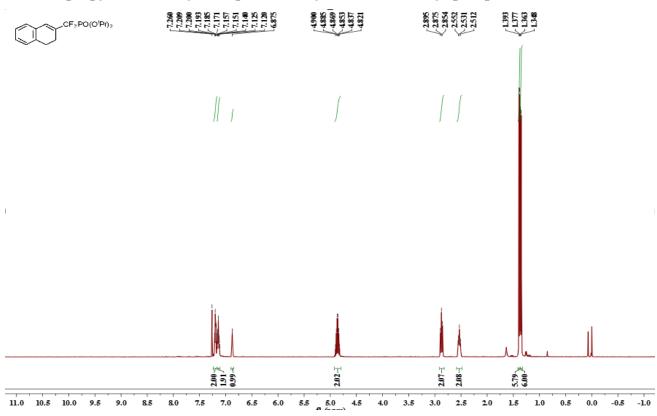


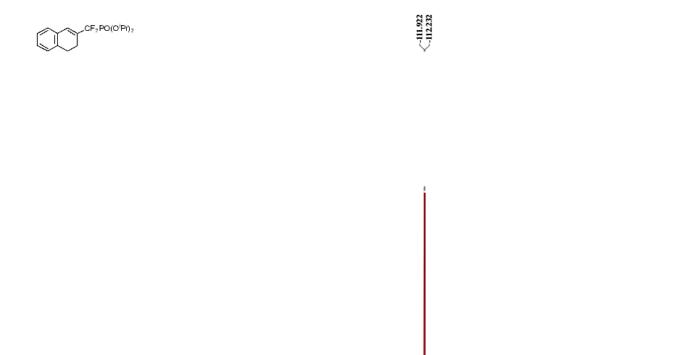
$Diisopropyl\ (1,1-difluoro-3-phenylbut-3-en-1-yl) phosphonate\ (3j).$

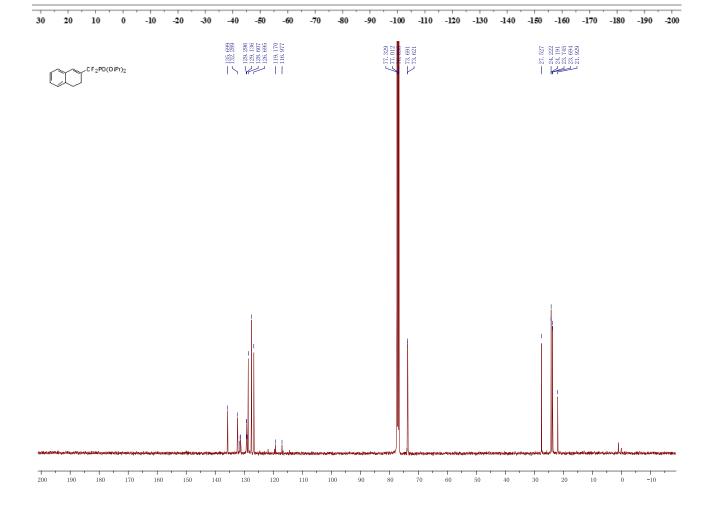


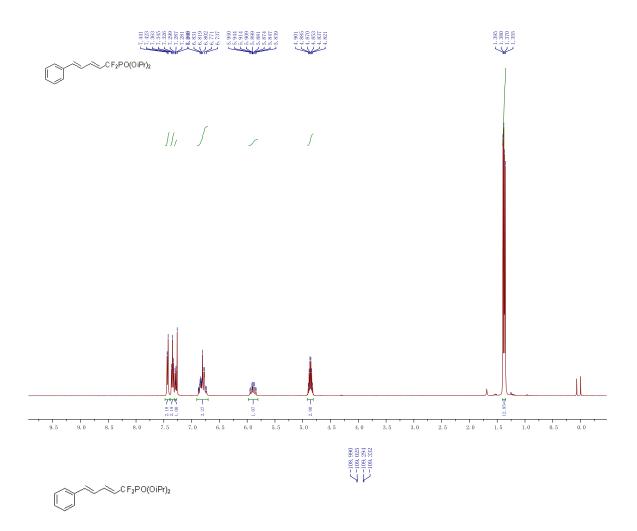


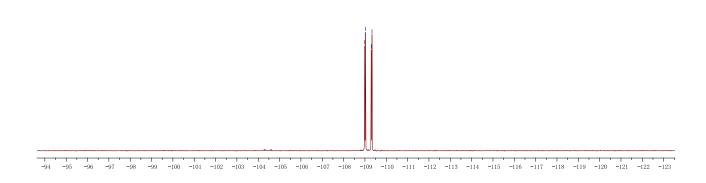


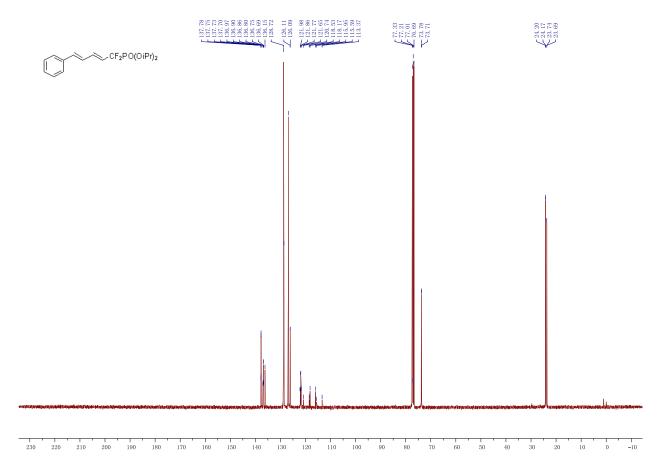

Diisopropyl (difluoro(1H-inden-2-yl)methyl)phosphonate (3k).

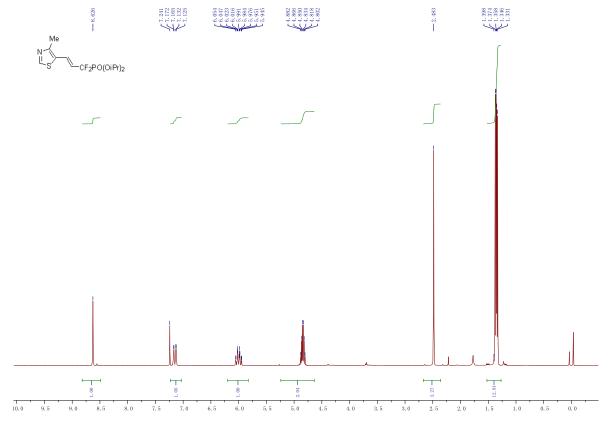


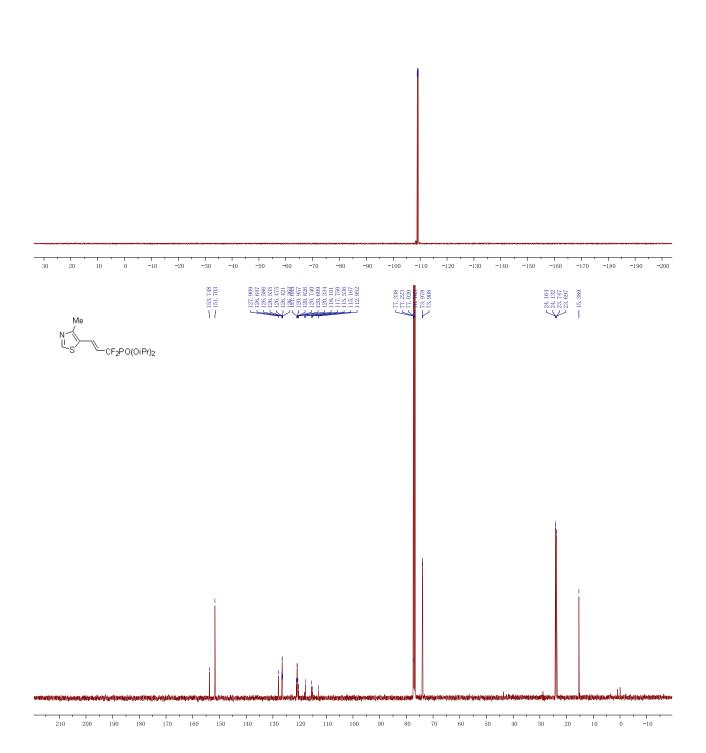


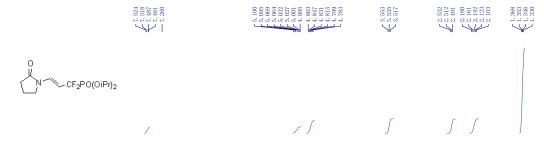

$(E)\hbox{-}Diisopropyl\ (3-(3,4-dihydronaphthalen-2-yl)-1,1-difluoroallyl) phosphonate\ (3l).$

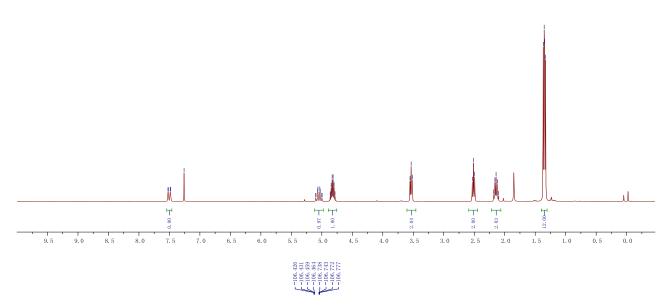


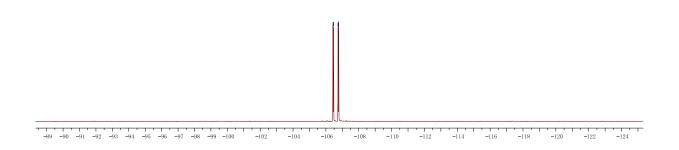


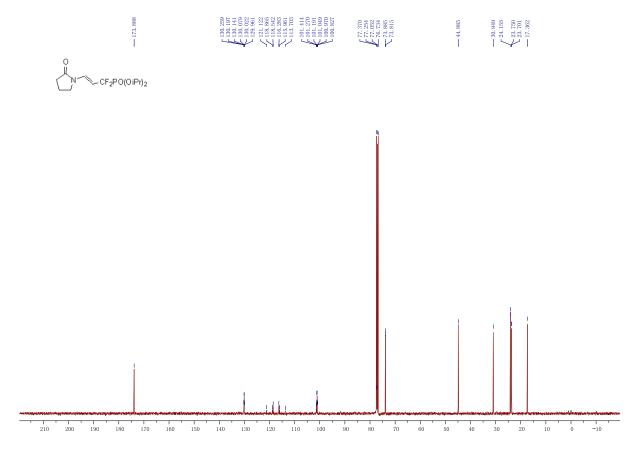

$Diisopropyl\ ((2E,4E)-1,1-difluoro-5-phenylpenta-2,4-dien-1-yl) phosphonate\ (3m).$

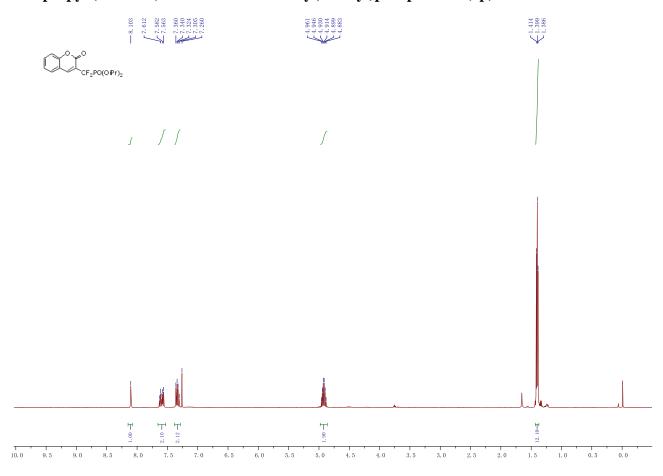


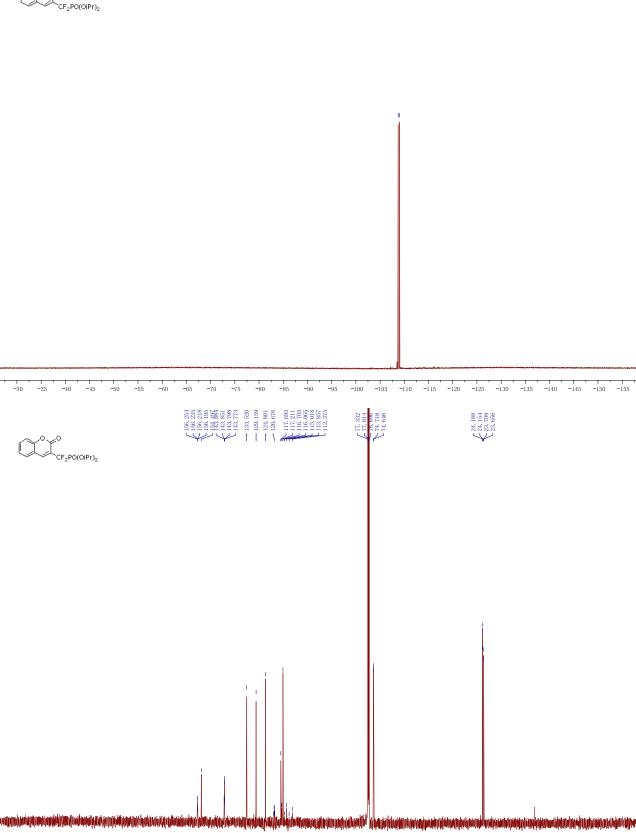

$(E)\hbox{-}Diisopropyl\ (1,1\hbox{-}difluoro\hbox{-}3\hbox{-}(4\hbox{-}methylthiazol\hbox{-}5\hbox{-}yl)allyl) phosphonate\ (3n).$



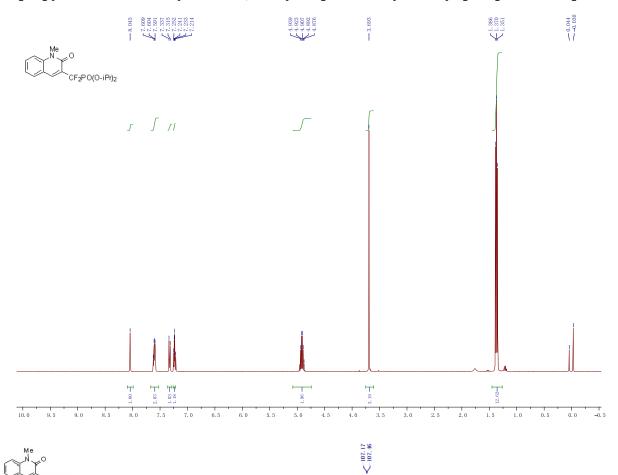


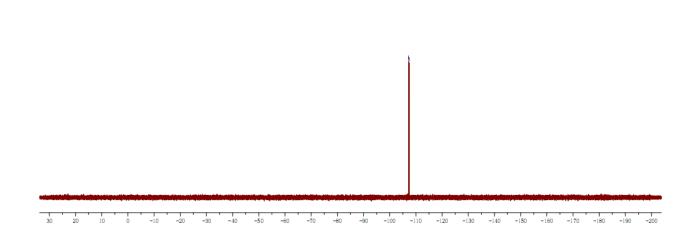

$(E)\hbox{-}Diisopropyl\ (1,1\hbox{-}difluoro\hbox{-}3\hbox{-}(2\hbox{-}oxopyrrolidin\hbox{-}1\hbox{-}yl)allyl) phosphonate\ (3o).}$

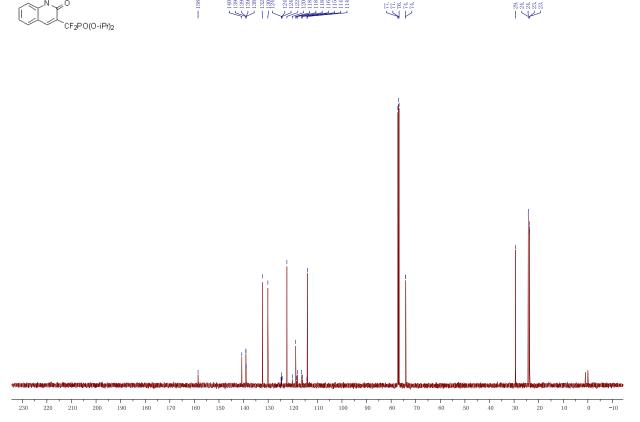




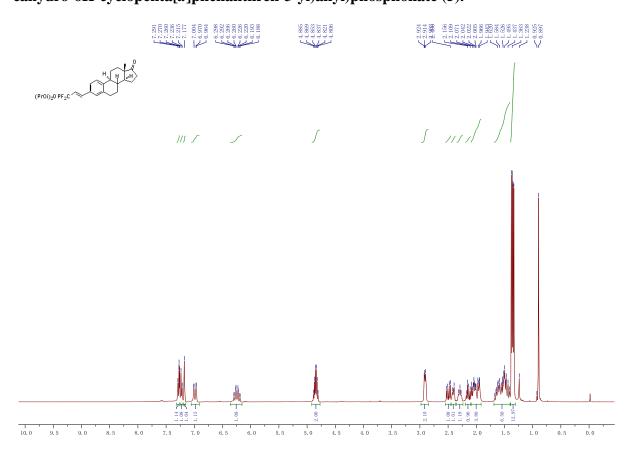
Diisopropyl (difluoro(2-oxo-2H-chromen-3-yl)methyl)phosphonate (3p).

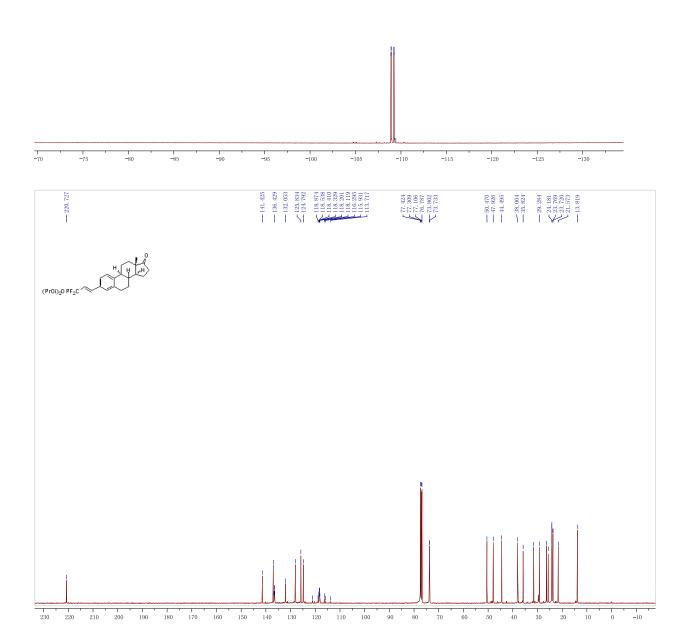


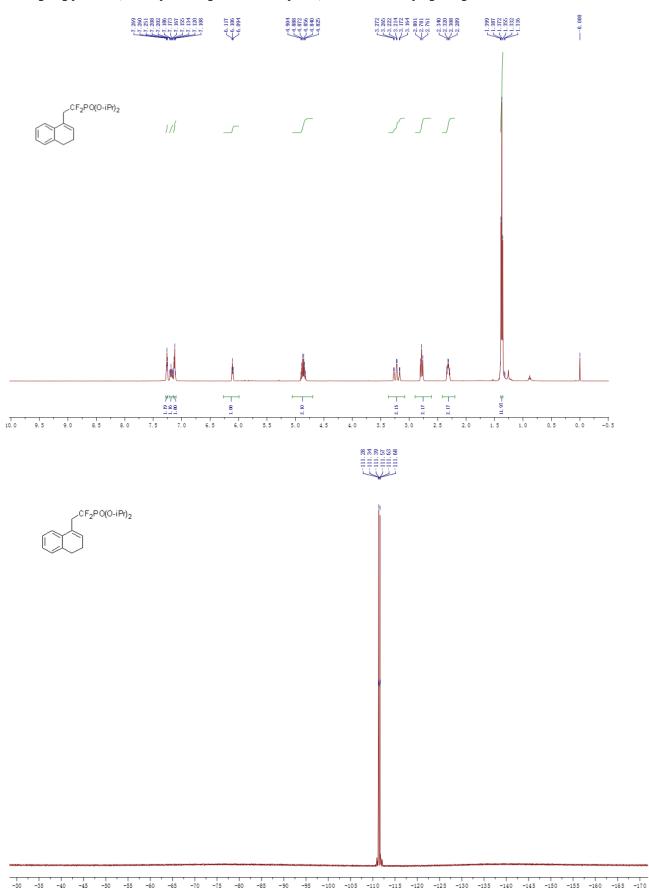


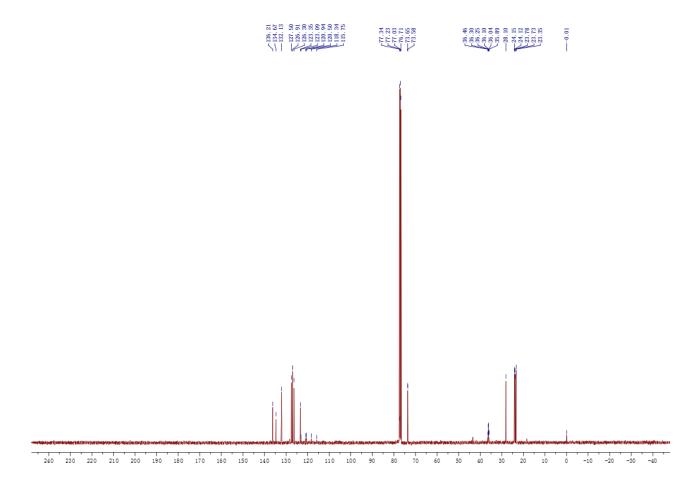


240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10


$Diisopropyl (difluoro (1-methyl-2-oxo-1, 2-dihydroquino lin-3-yl) methyl) phosphonate \ (3q).$




 $\label{eq:decomposition} \mbox{Diisopropyl}((E)-1,1-\mbox{difluoro-}3-((8R,9S,13S,14S)-13-\mbox{methyl-}17-\mbox{oxo-}7,8,9,11,12,13,14,15,16,17-\mbox{de cahydro-}6H-\mbox{cyclopenta}[a]\mbox{phenanthren-}3-\mbox{yl})\mbox{allyl})\mbox{phosphonate } (5).$



Diisopropyl (2-(3,4-dihydronaphthalen-1-yl)-1,1-difluoroethyl)phosphonate (7).

