Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2016

Supporting Information

Low-Valent Cobalt-Catalyzed C-H Allylation

Xuefeng Cong,^a Shengxian Zhai^b and Xiaoming Zeng^{*,a}

^aCenter for Organic Chemistry, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, P. R. China

^bThe State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engeneering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China

Table of Contents

1. Materials and Methods	S2
2. Investigation of the Key Reaction Parameters	S2
3. General Procedure for Cobalt-Catalyzed ortho-C-H Allylation	S4
4. Cobalt-Catalyzed ortho-C-H Allylation of 2-Phenylpyridine with Allyl	Carbonate
(Z)-2a and 2b	S19
5. Intermolecular Kinetic Isotopic Effect Experiment	S20
6. ¹ H, ¹³ C and ¹⁹ F NMR Spectra	S22

1. Materials and Methods

General. All reactions dealing with air- or moisture-sensitive compounds were carried out in a flame-dried, sealed Schlenk reaction tube under an atmosphere of nitrogen. Analytical thin-layer chromatography was performed on glass plates coated with 0.25 mm 230–400 mesh silica gel containing a fluorescent indicator (Merck). Flash silica gel column chromatography was performed on silica gel 60N (spherical and neutral, 140–325 mesh) as described by Still.¹ NMR spectra were measured on a Bruker AV-400 spectrometer and reported in parts per million. ¹H NMR spectra were recorded at 400 MHz in CDCl₃ were referenced internally to tetramethylsilane as a standard, and ¹³C NMR spectra were recorded at 100 MHz and referenced to the solvent resonance. Analytical gas chromatography (GC) was carried out on a Thermo Trace 1300 gas chromatograph, equipped with a flame ionization detector. Mass spectra (GC-MS) were taken at Thermo Trace 1300 gas chromatograph mass spectrometer. High resolution (HR MS) mass spectra were recorded by ESI-TOF.

Materials. Unless otherwise noted, materials were purchased from Tokyo Chemical Industry Co., Aldrich Inc., and other commercial suppliers and used as received. $Co(acac)_3$ (>98.0%), $Co(acac)_2$ (>99.0%), $CoCl_2$ (99.9%), and $CoBr_2$ (99.0%) were purchased from Aldrich Inc. and Tokyo Chemical Industry Co., and used as received. $Co(OAc)_2$ (>98.0%) were purchased from Alfa Aesar and used as received. Solvents were dried over sodium (for THF, Et₂O) by refluxing for overnight and freshly distilled prior to use. 2-Phenylpyridines², aromatic imines³ and allyl carbonate⁴ was prepared according to the corresponding literatures. Grignard reagents were purchased or were prepared from the corresponding halides and magnesium turnings in anhydrous THF, and titrated prior to use.

2. Investigation of the Key Reaction Parameters

The reactions were carried out according to the general procedure for cobalt catalyzed *ortho*-C–H allylation by the related parameter optimization shown in Tables S1, S2, and S3.

Table S1. Investigation of the effect of allylic oxygen electrophiles (2) for the synthesis of (E)-2-(2-cinnamylphenyl)pyridine $(3a)^a$

Entry	OR	Cobalt salt	RMgX	Solvent	3a (%)
1	-OH	Co(acac) ₃	TMSCH ₂ MgCl	Et ₂ O	n.d.
2	-OAc	Co(acac) ₃	TMSCH ₂ MgCl	Et ₂ O	67
3	-OMe	Co(acac) ₃	TMSCH ₂ MgCl	Et ₂ O	23
4	-OBoc	Co(acac) ₃	TMSCH ₂ MgCl	Et ₂ O	70
5	-P(O)(OEt)2	Co(acac) ₃	TMSCH ₂ MgCl	Et ₂ O	30

^{*a*} Reactions conditions: **1a** (0.2 mmol), **2** (0.3 mmol), Co(acac)₃ (10 mol %), TMSCH₂MgCl (0.4 mmol), 25 °C, 12 h, isolated yield. n.d. = Not detected by GC-MS and TLC analyses.

Table S2. Investigation of the effect of Cobalt catalysts for the synthesis of (E)-2-(2-cinnamylphenyl)pyridine $(3a)^a$

Entry	OR	Cobalt salt	RMgX	Solvent	3a (%)
1	-OBoc	Co(acac) ₃	TMSCH ₂ MgCl	Et ₂ O	70
2	-OBoc	CoCl ₂	TMSCH ₂ MgCl	Et ₂ O	56
3	-OBoc	CoBr ₂	TMSCH ₂ MgCl	Et ₂ O	50
4	-OBoc	$Co(acac)_2$	TMSCH ₂ MgCl	Et ₂ O	62
5	-OBoc	Co(OAc) ₂	TMSCH ₂ MgCl	Et ₂ O	9

^a Reactions conditions: 1a (0.2 mmol), 2a (0.3 mmol), [Co] (10 mol %), TMSCH₂MgCl (0.4 mmol), 25 °C, 12 h, isolated

Table S3. Investigation of the effect of RMgX for the synthesis of (E)-2-(2-cinnamylphenyl)pyridine $(3a)^a$

Entry	OR	Cobalt salt	RMgX	Solvent	3a (%)
1	-OBoc	Co(acac) ₃	TMSCH ₂ MgCl	Et ₂ O	70
2^b	-OBoc	Co(acac) ₃	TMSCH ₂ MgCl	Et ₂ O	95 $(3a/3a_{di} = 10/1)^c$
3	-OBoc	Co(acac) ₃	PhMgBr	THF	<10
4	-OBoc	Co(acac) ₃	CH ₃ MgCl	THF	<10
5	-OBoc	Co(acac) ₃	i-PrMgCl	THF	n.d.
6	-OBoc	Co(acac) ₃	<i>n</i> -BuMgBr	THF	n.d.
7	-OBoc	Co(acac) ₃	CyMgBr	THF	trace
8	-OBoc	Co(acac) ₃	t-BuMgBr	THF	trace

^{*a*} Reactions conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), Co(acac)₃ (10 mol %), TMSCH₂MgCl (0.4 mmol), 25 °C, 12 h, isolated yield. ^{*b*} **2a** (0.4 mmol) was used. ^{*c*} The ratio was detected by ¹H NMR spectroscopy. n.d. = Not detected by GC-MS and TLC analyses.

3. General Procedure for Cobalt-Catalyzed ortho-C-H Allylation

General Procedure A

mmol), Co(acac)₃ (7 mg, 0.02 mmol), and Et₂O (0.2 mL). To the mixture was added a solution of TMSCH₂MgCl (1.0 M, 0.40 mL, 0.40 mmol) in Et₂O dropwise at 0 °C under N₂. The reaction mixture was stirred at 25 °C for 12 h, and then quenched by the addition of saturated NH₄Cl aqueous solution (2.0 mL). The resulting mixture was stirred at room temperature for 10 min, and then extracted with ethyl acetate (3 x 10 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to provide the product **3**.

General Procedure B

In a 10 mL Schlenk tube were placed aromatic imines 4 (0.20 mmol), allyl carbonate 2a (0.40 mmol), Co(acac)₃ (7 mg, 0.02 mmol), and Et₂O (0.2 mL). To the mixture was added a solution of TMSCH₂MgCl (1.0 M, 0.40 mL, 0.40 mmol) in Et₂O dropwise at 0 °C under N₂. The reaction mixture was stirred at 25 °C for 12 h, and then quenched by the addition of saturated 3 M HCl aqueous solution (2.0 mL). The resulting mixture was stirred at room temperature for 3 h, and then extracted with ethyl acetate (3 x 10 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel to provide the product **5**.

(*E*)-2-(2-Cinnamylphenyl)pyridine (Table 2, 3a)

The general procedure A was applied to 2-phenylpyridine (31 mg, 0.2 mmol), (E)-tert-butyl

cinnamyl carbonate (94 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/15) to afford the title compound (46.5 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.71 (d, *J* = 4.4 Hz, 1H), 7.40 (d, *J* = 7.6 Hz, 2H), 7.37–7.32 (m, 3H), 7.26–7.24 (m, 5H), 7.17–7.16 (m, 1H), 6.29–6.18 (m, 2H), 3.65 (d, *J* = 5.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 159.6, 149.1, 140.5, 137.9, 137.5, 136.2, 130.8, 130.2, 129.9, 129.5, 128.5, 128.4, 127.0, 126.4, 126.1, 124.5, 121.9, 36.7. HRMS (ESI⁺): calcd for C₂₀H₁₈N [M+H]⁺ 272.1439, found 272.1435.

(*E*)-2-(2-Cinnamyl-4-methylphenyl)pyridine (Table 2, 3b)

The general procedure A was applied to 2-(*p*-tolyl)pyridine (34 mg, 0.2 mmol), (*E*)-*tert*-butyl cinnamyl carbonate (94 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/15) to afford the title compound (47 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.68 (d, *J* = 4.4 Hz, 1H), 7.67 (t, *J* = 7.6 Hz, 1H), 7.37 (d, *J* = 7.6 Hz, 1H), 7.31–7.19 (m, 6H), 7.16–7.11 (m, 3H), 6.29–6.19 (m, 2H), 3.62 (d, *J* = 5.6 Hz, 2H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 159.9, 149.0, 138.2, 137.7, 137.6, 136.1, 130.8, 130.6, 129.8, 129.6, 128.4, 127.1, 126.9, 126.0, 124.2, 121.5, 36.6, 21.2. HRMS (ESI⁺): calcd for C₂₁H₂₀N [M+H]⁺ 286.1596, found 286.1589.

(*E*)-2-(2-Cinnamyl-6-methylphenyl)pyridine (Table 2, 3c)

The general procedure A was applied to 2-(*o*-tolyl)pyridine (34 mg, 0.2 mmol), (*E*)-*tert*-butyl cinnamyl carbonate (94 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/15)

to afford the title compound (44.5 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.65$ (d, J = 3.6 Hz, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.18–7.07 (m, 10H), 6.12–6.05 (m, 1H), 5.99 (d, J = 16.0 Hz, 1H), 3.20 (d, J = 5.2 Hz, 2H), 2.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.3$, 149.5, 140.2, 137.9, 137.5, 136.2, 136.1, 130.5, 129.2, 128.4, 128.2, 128.1, 127.0, 126.9, 126.0, 124.9, 121.8, 36.8, 20.3. HRMS (ESI⁺): calcd for C₂₁H₂₀N [M+H]⁺ 286.1596, found 286.1590.

(*E*)-2-(2-Cinnamyl-5-methylphenyl)pyridine (Table 2, 3d) and (E)-2-(2-cinnamyl-3-methylphenyl)pyridine (Table 2, 3d')

The general procedure A was applied to 2-(*m*-tolyl)pyridine (34 mg, 0.2 mmol), (*E*)-*tert*-butyl cinnamyl carbonate (94 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/15) to afford the title mixed compounds (49 mg, 86% yield). The ratio of **3d/3d'** (1/1.8) was determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃): δ = 8.69 (m, 1H), 7.71–7.65 (m, 1H), 7.38 (d, *J* = 7.6 Hz, 1H), 7.23–7.16 (m, 9H), 6.27–6.17 (m, 0.7H, **3d'**), 6.27–6.17 (m, 0.7H, **3d**), 6.06 (d, *J* = 16.0 Hz, 0.7H, **3d**), 3.59 (m, 2H), 2.40 (s, 2H, **3d'**), 2.37 (s, 1.1H, **3d**); ¹³C NMR (100 MHz, CDCl₃): δ = 160.5, 159.9, 149.2, 149.1, 141.4, 140.3, 137.61, 137.59, 136.02, 135.97, 135.89, 135.5, 134.7, 130.54, 130.50, 130.13, 130.08, 129.7, 129.2, 128.7, 128.4, 127.8, 126.8, 126.2, 125.98, 125.94, 124.1, 121.7, 36.2, 33.2, 20.9, 20.0. HRMS (ESI⁺): calcd for C₂₁H₂₀N [M+H]⁺ 286.1596, found 286.1591.

(*E*)-2-(2-Cinnamyl-4-methoxyphenyl)pyridine (Table 2, 3e)

The general procedure A was applied to 2-(4-methoxyphenyl)pyridine (37 mg, 0.2 mmol),

(*E*)-*tert*-butyl cinnamyl carbonate (94 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 \mathbb{C} for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/15) to afford the title compound (47 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.67$ (d, J = 4.4 Hz, 1H), 7.67 (t, J = 8.0 Hz, 1H), 7.38–7.37 (m, 2H), 7.26–7.17 (m, 7H), 6.90 (s, 1H), 6.84 (d, J = 8.4 Hz, 1H), 6.32–6.08 (m, 2H), 3.83 (s, 3H), 3.65 (d, J = 2.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.7$, 149.1, 139.5, 137.5, 136.1, 133.3, 131.2, 130.9, 129.3, 128.4, 126.9, 126.0, 124.2, 121.4, 115.6, 111.6, 55.3, 36.8. HRMS (ESI⁺): calcd for C₂₁H₂₀NO [M+H]⁺ 302.1545, found 302.1538.

(E)-2-(2-Cinnamyl-3-methoxyphenyl)pyridine (Table 2, 3f)

The general procedure A was applied to 2-(3-methoxyphenyl)pyridine (37 mg, 0.2 mmol), (*E*)-*tert*-butyl cinnamyl carbonate (94 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 \mathbb{C} for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/15) to afford the title compound (50.5 mg, 84% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.69 (d, *J* = 4.0 Hz, 1H), 7.68 (t, *J* = 7.6 Hz, 1H), 7.39 (d, *J* = 7.6 Hz, 1H), 7.31–7.23 (m, 6H), 7.15 (m, 1H), 7.01 (d, *J* = 7.6 Hz, 1H), 6.95 (d, *J* = 7.6 Hz, 1H), 6.31–6.24 (m, 1H), 6.06 (d, *J* = 16.0 Hz, 1H), 3.88 (s, 3H), 3.58 (d, *J* = 6.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 159.7, 157.9, 149.2, 142.1, 137.9, 135.9, 129.7, 129.4, 128.3, 127.1, 126.6, 126.4, 125.9, 124.3, 122.2, 121.8, 110.6, 55.7, 30.2. HRMS (ESI⁺): calcd for C₂₁H₂₀NO [M+H]⁺ 302.1545, found 302.1536.

(*E*)-2-(2-Cinnamyl-4-fluorophenyl)pyridine (Table 2, 3g)

The general procedure A was applied to 2-(4-fluorophenyl)pyridine (35 mg, 0.2 mmol), (*E*)-*tert*-butyl cinnamyl carbonate (94 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25

C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/15) to afford the title compound (42 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.69 (d, *J* = 4.4 Hz, 1H), 7.70 (t, *J* = 7.6 Hz, 1H), 7.40–7.36 (m, 2H), 7.27–7.19 (m, 6H), 7.06 (d, *J* = 10.0 Hz, 1H), 6.98 (t, *J* = 8.4 Hz, 1H), 6.28–6.13 (m, 2H), 3.63 (d, *J* = 5.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 161.5 (d, *J* = 246.0 Hz), 158.9, 149.2, 140.6 (d, *J* = 7.0 Hz), 137.2, 136.5, 136.3, 131.5 (d, *J* = 8.0 Hz), 131.4, 128.4, 127.1, 126.1, 124.2, 121.9, 116.5 (d, *J* = 21.0 Hz), 113.2 (d, *J* = 21.0 Hz), 36.6; ¹⁹F NMR (377 MHz, CDCl₃): δ = -113.85. HRMS (ESI⁺): calcd for C₂₀H₁₇FN [M+H]⁺ 290.1345, found 290.1337.

(*E*)-2-(2-Cinnamyl-3-fluorophenyl)pyridine (Table 2, 3h)

The general procedure A was applied to 2-(3-fluorophenyl)pyridine (35 mg, 0.2 mmol), (*E*)-*tert*-butyl cinnamyl carbonate (94 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 \mathbb{C} for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/15) to afford the title compound (48 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.71$ (d, J = 4.4 Hz, 1H), 7.70 (t, J = 8.0 Hz, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.41–7.20 (m, 7H), 7.16–7.09 (m, 2H), 6.28–6.21 (m, 1H), 6.12 (d, J = 16.0 Hz, 1H), 3.64 (d, J = 6.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 160.4$ (d, J = 244.0 Hz), 158.6, 149.3, 142.7 (d, J = 4.0 Hz), 137.5, 136.3, 130.5, 128.3, 128.1, 127.5 (d, J = 9.0 Hz), 126.9, 126.0, 125.5 (d, J = 3.0 Hz), 125.3 (d, J = 16.0 Hz), 124.1, 122.2, 115.2 (d, J = 23.0 Hz), 29.3; ¹⁹F NMR (377 MHz, CDCl₃): $\delta = -116.83$. HRMS (ESI⁺): calcd for C₂₀H₁₇FN [M+H]⁺ 290.1345, found 290.1337.

(*E*)-2-(2-Cinnamyl-4,6-difluorophenyl)pyridine (Table 2, 3i)

The general procedure A was applied to 2-(2,4-difluorophenyl)pyridine (38 mg, 0.2 mmol),

(*E*)-*tert*-butyl cinnamyl carbonate (94 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 \C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/15) to afford the title compound (49 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.74 (d, *J* = 4.0 Hz, 1H), 7.72 (t, *J* = 7.6 Hz, 1H), 7.34 (d, *J* = 7.6 Hz, 1H), 7.31–7.21 (m, 6H), 6.90 (d, *J* = 9.2 Hz, 1H), 6.77 (t, *J* = 8.8 Hz, 1H), 6.19–6.07 (m, 2H), 3.46 (d, *J* = 6.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 161.1 (dd, *J* = 248.0, 13.0 Hz), 153.1, 149.6, 142.9 (dd, *J* = 9.0, 4.0 Hz), 137.1, 136.2, 131.8, 128.5, 127.4, 127.3, 126.1, 126.0, 122.6, 112.2 (dd, *J* = 12.0, 4.0 Hz), 101.7 (t, *J* = 26.0 Hz), 36.4; ¹⁹F NMR (377 MHz, CDCl₃): δ = -110.05 (s, 1F), -112.27 (s, 1F). HRMS (ESI⁺): calcd for C₂₀H₁₆F₂N [M+H]⁺ 308.1251, found 308.1243.

(*E*)-2-(2-Cinnamyl-5-(trifluoromethyl)phenyl)pyridine (Table 2, 3j)

The general procedure A was applied to 2-(3-(trifluoromethyl)phenyl)pyridine (45 mg, 0.2 mmol), (*E*)-*tert*-butyl cinnamyl carbonate (94 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/15) to afford the title compound (44 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.73 (d, *J* = 4.8 Hz, 1H), 7.75 (td, *J* = 7.6, 1.6 Hz, 1H), 7.68 (s, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.33–7.29 (m, 1H), 7.27–7.26 (m, 4H), 7.22–7.17 (m, 1H), 6.27–6.17 (m, 2H), 3.66 (d, *J* = 4.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 158.4, 149.4, 142.2, 141.0, 137.2, 136.5, 131.6, 130.6, 128.5, 128.2, 127.2, 126.8 (q, *J* = 3.0 Hz), 126.1, 125.5 (q, *J* = 270.0 Hz), 125.1 (q, *J* = 4.0 Hz), 124.2, 122.2, 36.5; ¹⁹F NMR (377 MHz, CDCl₃): δ = -63.01. HRMS (ESI⁺): calcd for C₂₁H₁₇F₃N [M+H]⁺ 340.1313, found 340.1313.

(*E*)-2-(5-Chloro-2-cinnamylphenyl)pyridine (Table 2, 3k)

The general procedure A was applied to 2-(3-chlorophenyl)pyridine (38 mg, 0.2 mmol), (*E*)-*tert*-butyl cinnamyl carbonate (94 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 \mathbb{C} for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/15) to afford the title compound (45 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.70 (d, *J* = 3.6 Hz, 1H), 7.70 (t, *J* = 7.6 Hz, 1H), 7.45 (d, *J* = 7.6 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.30–7.23 (m, 7H), 7.17–7.16 (m, 1H), 6.26–6.19 (m, 1H), 6.05 (d, *J* = 16.0 Hz, 1H), 3.73 (d, *J* = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 159.2, 149.3, 142.9, 137.6, 136.2, 135.5, 135.4, 130.8, 129.6, 128.6, 128.4, 127.5, 127.4, 126.9, 126.0, 124.2, 122.3, 33.7. HRMS (ESI⁺): calcd for C₂₀H₁₇Cl [M+H]⁺ 306.1050, found 306.1043.

(*E*)-2-(2-Cinnamylphenyl)-3-methylpyridine (Table 2, 3l)

The general procedure A was applied to 3-methyl-2-phenylpyridine (34 mg, 0.2 mmol), (*E*)-*tert*-butyl cinnamyl carbonate (94 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 \mathbb{C} for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/15) to afford the title compound (43 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.72 (d, *J* = 4.0 Hz, 1H), 7.70 (t, *J* = 7.6 Hz, 1H), 7.27–7.24 (m, 7H), 7.19–7.14 (m, 3H), 6.20–6.13 (m, 1H), 6.06 (d, *J* = 16.0 Hz, 1H), 3.27 (d, *J* = 5.6 Hz, 2H), 2.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 159.4, 149.6, 140.3, 137.9, 137.6, 136.1, 136.0, 130.5, 129.2, 128.4, 128.1, 127.0, 126.9, 126.0, 124.9, 121.8, 37.1, 20.3. HRMS (ESI⁺): calcd for C₂₁H₂₀N [M+H]⁺ 286.1596, found 286.1591.

(*E*)-2-(2,4-Difluoro-6-(3-(*p*-tolyl)allyl)phenyl)pyridine (Table 3, 3m)

The general procedure A was applied to 2-(2,4-difluorophenyl)pyridine (38 mg, 0.2 mmol),

(*E*)-tert-butyl (3-(*p*-tolyl)allyl) carbonate (99 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/15) to afford the title compound (51 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.73$ (d, J = 4.4 Hz, 1H), 7.72 (t, J = 7.6 Hz, 1H), 7.33 (d, J = 8.4 Hz, 1H), 7.27 (t, J = 6.0 Hz, 1H), 7.13 (d, J = 7.6 Hz, 2H), 7.06 (d, J = 8.0 Hz, 2H), 6.89 (d, J = 9.2 Hz, 1H), 6.76 (t, J = 9.2 Hz, 1H), 6.11 (d, J = 16.0 Hz, 1H), 6.08–6.01 (m, 1H), 3.44 (d, J = 6.4 Hz, 2H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 161.0$ (dd, J = 248.0, 13.0 Hz), 159.1 (dd, J = 246.0, 13.0 Hz), 153.2, 149.6, 143.1 (dd, J = 9.0, 4.0 Hz), 137.0, 136.2, 134.3, 131.6, 129.2, 126.3, 126.0, 124.4 (dd, J = 15.0, 4.0 Hz), 122.6, 112.2 (dd, J = 21.0, 3.0 Hz), 101.6 (t, J = 26.0 Hz), 36.4, 21.1; ¹⁹F NMR (377 MHz, CDCl₃): $\delta = -110.09- -110.13$ (m, 1F), -112.34- -112.38 (m, 1F). HRMS (ESI⁺): calcd for C₂₁H₁₈F₂N [M+H]⁺ 322.1407, found 322.1411.

(*E*)-2-(2,4-Difluoro-6-(3-(4-methoxyphenyl)allyl)phenyl)pyridine (Table 3, 3n)

The general procedure A was applied to 2-(2,4-difluorophenyl)pyridine (38 mg, 0.2 mmol), (*E*)-*tert*-butyl (3-(4-methoxyphenyl)allyl) carbonate (106 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/10) to afford the title compound (58 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.73 (d, *J* = 4.8 Hz, 1H), 7.72 (t, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 7.6 Hz, 1H), 7.27 (t, *J* = 6.0 Hz, 1H), 7.17 (d, *J* = 7.6 Hz, 2H), 6.89 (d, *J* = 10.6 Hz, 1H), 6.82–6.76 (m, 3H), 6.09 (d, *J* = 15.6 Hz, 1H), 6.00–5.93 (m, 1H), 3.78 (s, 3H), 3.43 (d, *J* = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 161.1 (dd, *J* = 247.0, 13.0 Hz), 159.0 (dd, *J* = 246.0, 13.0 Hz), 158.9, 149.6, 143.2 (dd, *J* = 9.0, 3.0 Hz), 136.2, 131.2, 129.9, 127.2, 125.9, 125.1, 124.4 (dd, *J* = 15.0, 3.0 Hz), 122.5, 113.9, 112.2 (dd, *J* = 21.0, 3.0 Hz), 101.6 (t, *J* = 26.0 Hz), 55.2, 36.4; ¹⁹F NMR (377 MHz, CDCl₃): δ =-110.13 (d, *J* = 7.5 Hz, 1F), -112.38 (d, *J* = 7.5 Hz, 1F). HRMS (ESI⁺): calcd for C₂₁H₁₈F₂NO [M+H]⁺ 338.1356, found 338.1358.

(*E*)-2-(2,4-Difluoro-6-(3-(4-methoxyphenyl)allyl)phenyl)pyridine (Table 3, 30)

The general procedure A was applied to 2-(2,4-difluorophenyl)pyridine (38 mg, 0.2 mmol), (*E*)-*tert*-butyl (3-(2-methoxyphenyl)allyl) carbonate (106 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/10) to afford the title compound (61 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.73 (d, *J* = 4.4 Hz, 1H), 7.72 (t, *J* = 7.6 Hz, 1H), 7.35 (d, *J* = 7.6 Hz, 1H), 7.31–7.25 (m, 2H), 7.16 (t, *J* = 7.6 Hz, 1H), 6.92 (d, *J* = 9.2 Hz, 1H), 6.85 (t, *J* = 7.6 Hz, 1H), 6.80 (d, *J* = 7.6 Hz, 1H), 6.72 (t, *J* = 9.2 Hz, 1H), 6.53 (d, *J* = 16.0 Hz, 1H), 6.16–6.08 (m, 1H), 3.81 (s, 3H), 3.46 (d, *J* = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 161.1 (dd, *J* = 248.0, 13.0 Hz), 159.0 (dd, *J* = 247.0, 13.0 Hz), 156.4, 153.2, 143.3 (dd, *J* = 9.0, 4.0 Hz), 136.2, 128.3, 128.0, 126.7, 126.6, 126.1, 126.0, 125.9, 124.3 (dd, *J* = 16.0, 4.0 Hz), 122.5, 120.5, 112.1 (dd, *J* = 22.0, 3.0 Hz), 110.7, 101.5 (t, *J* = 27.0 Hz), 55.3, 36.9; ¹⁹F NMR (377 MHz, CDCl₃): δ =–110.20 (d, *J* = 7.9 Hz, 1F), –112.46 (d, *J* = 7.2 Hz, 1F). HRMS (ESI⁺): calcd for C₂₁H₁₈F₂NO [M+H]⁺ 338.1356, found 338.1357.

(*E*)-2-(2,4-Difluoro-6-(3-(4-methoxyphenyl)allyl)phenyl)pyridine (Table 3, 3p)

The general procedure A was applied to 2-(2,4-difluorophenyl)pyridine (38 mg, 0.2 mmol), (*E*)-*tert*-butyl (3-(3,4-dimethoxyphenyl)allyl) carbonate (118 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/7) to afford the title compound (36 mg, 49% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.74 (d, *J* = 2.8 Hz, 1H), 7.73 (t, *J* = 8.0 Hz, 1H), 7.34 (d, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 6.4 Hz, 1H), 7.26 (s, 1H), 6.90 (d, *J* = 9.2 Hz, 1H), 6.81–6.78 (m, 4H), 6.09 (d, *J* = 16.0 Hz, 1H), 6.02–5.94 (m, 1H), 3.86 (m, 6H), 3.44 (d, *J* = 6.4 Hz, 2H); ¹³C NMR S13

(100 MHz, CDCl₃): δ = 161.1 (dd, J = 248.0, 14.0 Hz), 159.1 (dd, J = 246.0, 12.0 Hz), 153.2, 149.7, 149.0, 148.6, 143.1 (dd, J = 9.0, 4.0 Hz), 136.2, 131.4, 130.2, 126.0, 125.5, 122.6, 119.2, 112.2 (dd, J = 21.0, 3.0 Hz), 111.1, 108.6, 101.6 (t, J = 26.0 Hz), 55.9, 55.8, 36.3; ¹⁹F NMR (377 MHz, CDCl₃): δ =-110.09 (d, J = 7.5 Hz, 1F), -112.29 (d, J = 7.5 Hz, 1F). HRMS (ESI⁺): calcd for C₂₂H₂₀F₂NO₂ [M+H]⁺ 368.1462, found 368.1464.

(*E*)-2-(2,4-Difluoro-6-(3-(4-fluorophenyl)allyl)phenyl)pyridine (Table 3, 3q)

The general procedure A was applied to 2-(2,4-difluorophenyl)pyridine (38 mg, 0.2 mmol), (*E*)-*tert*-butyl (3-(4-fluorophenyl)allyl) carbonate (101 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/15) to afford the title compound (59 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.75 (d, *J* = 4.4 Hz, 1H), 7.74 (t, *J* = 7.6 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.29 (t, *J* = 6.0 Hz, 1H), 7.21–7.18 (m, 2H), 6.97–6.88 (m, 3H), 6.77 (t, *J* = 9.2 Hz, 1H), 6.10 (d, *J* = 16.0 Hz, 1H), 6.05–5.98 (m, 1H), 3.45 (d, *J* = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 161.2 (dd, *J* = 248.0, 13.0 Hz), 160.9 (d, *J* = 245.0 Hz), 159.1 (dd, *J* = 246.0, 12.0 Hz), 152.9, 149.5, 142.8 (dd, *J* = 9.0, 3.0 Hz), 136.4, 133.2 (d, *J* = 4.0 Hz), 130.6, 127.5 (d, *J* = 8.0 Hz), 127.1 (d, *J* = 2.0 Hz), 126.0, 124.1 (dd, *J* = 15.0, 3.0 Hz), 122.7, 115.2 (d, *J* = 22.0 Hz), 112.2 (dd, *J* = 21.0, 3.0 Hz), 101.7 (t, *J* = 27.0 Hz), 36.4; ¹⁹F NMR (377 MHz, CDCl₃): δ =–109.84 (t, *J* = 7.5 Hz, 1F), –112.14 (t, *J* = 7.9 Hz, 1F), –114.93 (d, *J* = 7.5 Hz, 1F). HRMS (ESI⁺): calcd for C₂₀H₁₅F₃N [M+H]⁺ 326.1157, found 326.1150.

(E)-2-(2,4-Difluoro-6-(3-(3-(trifluoromethyl)phenyl)allyl)phenyl)pyridine (Table 3, 3r)
The general procedure A was applied to 2-(2,4-difluorophenyl)pyridine (38 mg, 0.2 mmol),
(E)-tert-butyl (3-(3-(trifluoromethyl)phenyl)allyl) carbonate (121 mg, 0.4 mmol) and S14

Co(acac)₃ (7 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/15) to afford the title compound (64 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.75 (d, *J* = 4.4 Hz, 1H), 7.73 (t, *J* = 7.6 Hz, 1H), 7.46–7.29 (m, 6H), 6.89 (d, *J* = 9.2 Hz, 1H), 6.78 (t, *J* = 9.2 Hz, 1H), 6.22–6.14 (m, 2H), 3.50 (d, *J* = 3.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 161.2 (dd, *J* = 248.0, 13.0 Hz), 159.1 (dd, *J* = 247.0, 13.0 Hz), 153.0, 149.6, 142.4 (dd, *J* = 8.0, 3.0 Hz), 137.8, 136.3, 131.3, 131.0, 130.7, 130.3, 129.5, 129.2, 128.9, 126.0, 125.4 (q, *J* = 270.0 Hz), 124.4 (dd, *J* = 16.0, 4.0 Hz), 123.7 (q, *J* = 4.0 Hz), 122.8 (q, *J* = 4.0 Hz), 122.7, 112.3 (dd, *J* = 22.0, 3.0 Hz), 101.9 (t, *J* = 27.0 Hz), 36.4; ¹⁹F NMR (377 MHz, CDCl₃): δ = -62.77 (s, 3F), -109.79 (d, *J* = 7.5 Hz, 1F), -112.01 (d, *J* = 7.5 Hz, 1F). HRMS (ESI⁺): calcd for C₂₁H₁₅F₅N [M+H]⁺ 376.1125, found 376.1124.

(*E*)-2-(2-(3-(4-Chlorophenyl)allyl)-4,6-difluorophenyl)pyridine (Table 3, 3s)

The general procedure A was applied to 2-(2,4-difluorophenyl)pyridine (38 mg, 0.2 mmol), (*E*)-*tert*-butyl (3-(4-chlorophenyl)allyl) carbonate (107 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/15) to afford the title compound (48 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.74 (d, *J* = 2.8 Hz, 1H), 7.73 (t, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.28 (t, *J* = 6.0 Hz, 1H), 7.22 (d, *J* = 7.6 Hz, 2H), 7.15 (d, *J* = 7.6 Hz, 2H), 6.88 (d, *J* = 9.2 Hz, 1H), 6.77 (t, *J* = 9.2 Hz, 1H), 6.18–6.04 (m, 2H), 3.47 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 161.2 (dd, *J* = 248.0, 13.0 Hz), 159.1 (dd, *J* = 247.0, 13.0 Hz), 153.1, 149.7, 142.6 (dd, *J* = 9.0, 4.0 Hz), 136.2, 135.6, 132.9, 130.5, 128.6, 128.2, 127.3, 125.9, 124.4 (dd, *J* = 16.0, 4.0 Hz), 122.6, 112.3 (dd, *J* = 21.0, 3.0 Hz), 101.8 (t, *J* = 25.0 Hz), 36.4; ¹⁹F NMR (377 MHz, CDCl₃): δ =-109.95 (d, *J* = 6.8 Hz, 1F), -112.16 (d, *J* = 7.5 Hz, 1F). HRMS (ESI⁺): calcd for C₂₀H₁₅CIF₂N [M+H]⁺ 342.0861, found 342.0856.

(E)-2-(2-(3-(4-Bromophenyl)allyl)-4,6-difluorophenyl)pyridine (Table 3, 3t)

The general procedure A was applied to 2-(2,4-difluorophenyl)pyridine (38 mg, 0.2 mmol), (*E*)-*tert*-butyl (3-(4-bromophenyl)allyl) carbonate (125 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/15) to afford the title compound (60 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.73 (d, *J* = 3.2 Hz, 1H), 7.72 (t, *J* = 7.6 Hz, 1H), 7.38–7.29 (m, 4H), 7.08 (d, *J* = 8.0 Hz, 2H), 6.87 (d, *J* = 9.2 Hz, 1H), 6.77 (t, *J* = 9.2 Hz, 1H), 6.15–6.05 (m, 2H), 3.46 (d, *J* = 3.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 161.1 (dd, *J* = 247.0, 13.0 Hz), 159.1 (dd, *J* = 247.0, 12.0 Hz), 153.1, 149.7, 142.5 (dd, *J* = 9.0, 4.0 Hz), 136.2, 136.0, 131.5, 130.5, 128.3, 127.6, 125.9, 124.4 (dd, *J* = 16.0, 4.0 Hz), 122.6, 121.0, 112.2 (dd, *J* = 21.0, 4.0 Hz), 101.8 (t, *J* = 27.0 Hz), 36.4; ¹⁹F NMR (377 MHz, CDCl₃): δ =-109.90 (d, *J* = 7.9 Hz, 1F), -112.12 (d, *J* = 7.9 Hz, 1F). HRMS (ESI⁺): calcd for C₂₀H₁₅BrF₂N [M+H]⁺ 386.0356 and 388.0335, found 386.0364 and 388.0343.

(*E*)-2-(2-Allylphenyl)pyridine (Table 3, 3u)⁵

The general procedure A was applied to 2-phenylpyridine (31 mg, 0.2 mmol), (*E*)-*tert*-butyl allyl carbonate (63 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/15) to afford the title compound (16 mg, 40% yield). ¹H NMR (400 MHz, CDCl₃): δ = 8.69 (d, *J* = 4.8 Hz, 1H), 7.70 (t, *J* = 8.0 Hz, 1H), 7.40–7.28 (m, 5H), 7.26–7.23 (m, 1H), 5.93–5.83 (m, 1H), 4.94 (d, *J* = 10.4 Hz, 1H), 4.87 (d, *J* = 17.2 Hz, 1H), 3.48 (d, *J* = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 159.9, 149.2, 140.5, 137.8, 137.7, 136.3, 130.1, 130.0, 128.6, 126.4, 124.3, 121.8, 115.7, 37.5, 27.3. HRMS (ESI⁺): calcd for C₁₄H₁₄N [M+H]⁺ 196.1126, found

196.1129.

(E)-1-(2-Cinnamylphenyl)ethanone (Scheme 2, 5a)

The general procedure B was applied to (*E*)-4-methoxy-*N*-(1-phenylethylidene)aniline (45 mg, 0.2 mmol), (*E*)-*tert*-butyl cinnamyl carbonate (94 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound (28.5 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.56 (d, *J* = 7.6 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.26–7.24 (m, 3H), 7.20–7.14 (m, 3H), 7.07 (t, *J* = 7.2 Hz, 1H), 6.38–6.24 (m, 2H), 3.71 (d, *J* = 5.2 Hz, 2H), 2.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 202.0, 140.0, 137.9, 137.5, 131.5, 131.2, 131.0, 129.2, 129.1, 128.4, 127.0, 126.2, 126.1, 37.2, 29.8. HRMS (ESI⁺): calcd for C₁₇H₁₇O [M+H]⁺ 237.1279, found 237.1276.

(E)-1-(2-Cinnamyl-4-methylphenyl)ethanone (Scheme 2, 5b)

The general procedure B was applied to (*E*)-4-methoxy-*N*-(1-(p-tolyl)ethylidene)aniline (48 mg, 0.2 mmol), (*E*)-*tert*-butyl cinnamyl carbonate (94 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound (29 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.61 (d, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.25 (t, *J* = 7.6 Hz, 2H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.14 (s, 1H), 7.09 (d, *J* = 8.0 Hz, 1H), 6.48–6.34 (m, 2H), 3.80 (d, *J* = 4.8 Hz, 2H), 2.56 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 201.3, 142.2, 140.6, 137.6, 134.8, 132.1, 130.8, 129.8, 129.5, 128.4, 126.9, 126.8, 126.1, 37.4, 29.6, 21.4. HRMS (ESI⁺): calcd for C₁₈H₁₉O [M+H]⁺ 251.1436, found 251.1444.

(*E*)-1-(2-Cinnamyl-4-methoxyphenyl)ethanone (Scheme 2, 5c)

The general procedure B was applied to (*E*)-4-methoxy-*N*-(1-(4-methoxyphenyl)ethylidene)aniline (51 mg, 0.2 mmol), (*E*)-*tert*-butyl cinnamyl carbonate (94 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound (37 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.75 (d, *J* = 8.8 Hz, 1H), 7.33 (d, *J* = 7.6 Hz, 2H), 7.29–7.26 (m, 2H), 7.16 (t, *J* = 7.2 Hz, 1H), 6.85 (s, 1H), 6.78 (d, *J* = 8.8 Hz, 1H), 6.46–6.35 (m, 2H), 3.86 (d, *J* = 4.8 Hz, 2H), 3.84 (s, 3H), 2.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 199.7, 162.1, 143.9, 137.6, 132.5, 131.0, 129.9, 129.2, 128.4, 127.0, 126.2, 116.9, 110.8, 55.3, 37.9, 29.3. HRMS (ESI⁺): calcd for C₁₈H₁₉O₂ [M+H]⁺ 267.1385, found 267.1380.

(*E*)-1-(2-Cinnamyl-4-fluorophenyl)ethanone (Scheme 2, 5d)

The general procedure B was applied to (*E*)-*N*-(1-(4-fluorophenyl)ethylidene)-4-methoxyaniline (49 mg, 0.2 mmol), (*E*)-*tert*-butyl cinnamyl carbonate (94 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound (32.5 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.75–7.72 (m, 1H), 7.34 (d, *J* = 7.6 Hz, 2H), 7.30–7.26 (m, 2H), 7.18 (t, *J* = 7.2 Hz, 1H), 7.04 (d, *J* = 10.0 Hz, 1H), 6.98 (t, *J* = 8.4 Hz, 1H), 6.45–6.30 (m, 2H), 3.82 (d, *J* = 6.4 Hz, 2H), 2.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 200.2, 163.0 (d, *J* = 252.0 Hz), 144.3 (d, *J* = 8.0 Hz), 137.3, 133.8 (d, *J* = 3.0 Hz), 131.9 (d, *J* = 9.0 Hz), 131.7, 128.5, 128.2, 127.2, 126.1, 118.0 (d, *J* = 21.0 Hz), 112.9 (d, *J* = 21.0 Hz), 37.3, 29.7; ¹⁹F NMR (377 MHz, CDCl₃): δ =–107.20. HRMS (ESI⁺): calcd for C₁₇H₁₆FO [M+H]⁺ 255.1185, found 255.1180.

(*E*)-1-(2-cinnamyl-3-methoxyphenyl)ethanone (Scheme 2, 5e)

The general procedure B was applied to (*E*)-3-methoxy-*N*-(1-(4-methoxyphenyl)ethylidene)aniline (51 mg, 0.2 mmol), (*E*)-*tert*-butyl cinnamyl carbonate (94 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/30) to afford the title compound (33 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.32–7.22 (m, 5H), 7.17–7.13 (m, 2H), 6.98 (d, *J* = 8.0 Hz, 1H), 6.41–6.29 (m, 2H), 3.86 (s, 3H), 3.74 (d, *J* = 5.2 Hz, 2H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 203.2, 158.2, 140.7, 138.0, 130.4, 129.2, 128.5, 127.6, 127.1, 126.9, 126.2, 120.3, 113.3, 56.0, 30.7, 29.4. GC-MS (EI): calcd for C₁₈H₁₉O₂ [M] 266.13, found 266.15.

Me O F

(E)-1-(2-Cinnamyl-3-fluorophenyl)ethanone (Scheme 2, 5f)

The general procedure B was applied to (*E*)-*N*-(1-(3-fluorophenyl)ethylidene)-4-methoxyaniline (49 mg, 0.2 mmol), (*E*)-*tert*-butyl cinnamyl carbonate (94 mg, 0.4 mmol) and Co(acac)₃ (7 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE = 1/40) to afford the title compound (33 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.42 (d, *J* = 7.6 Hz, 1H), 7.30–7.15 (m, 7H), 6.45–6.30 (m, 2H), 3.78 (d, *J* = 5.2 Hz, 2H), 2.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 201.4, 160.6 (d, *J* = 245.0 Hz), 140.4 (d, *J* = 4.0 Hz), 137.6, 131.2, 128.6, 127.9, 127.5 (d, *J* = 8.0 Hz), 127.2, 127.0 (d, *J* = 16.0 Hz), 126.3, 124.6 (d, *J* = 4.0 Hz), 118.5 (d, *J* = 24.0 Hz), 30.2, 28.8 (d, *J* = 5.0 Hz); ¹⁹F NMR (377 MHz, CDCl₃): δ = –115.64. GC-MS (EI): calcd for C₁₇H₁₆FO [M] 254.11, found 254.11.

4. Cobalt-Catalyzed *ortho*-C–H Allylation of 2-Phenylpyridine with Allyl Carbonate (Z)-2a and 2b

The general procedure A was applied to 2-arylpyridine **1a** (31.0 mg, 0.20 mmol), allyl carbonate **2b** or (**Z**)-**2a** (93.6 mg, 0.40 mmol), and Co(acac)₃ (7.1 mg, 0.02 mmol) at 25 °C for 12 h. The crude product was purified by column chromatography on silica gel (EtOAc/PE =1/15) to provide the product **3a**. ((**Z**)-**2a**: 89% yield; **2b**: 80% yield)

5. Intermolecular Kinetic Isotopic Effect Experiment

The general procedure A was applied to 2-arylpyridine **1a** (31.0 mg, 0.20 mmol), **1a**- d_5 (32.0 mg, 0.20 mmol), (*E*)-*tert*-butyl cinnamyl carbonate (93.6 mg, 0.4 mmol), and Co(acac)₃ (7.1 mg, 0.02 mmol) at 25 °C for 1 h. The crude residue was analyzed by ¹H NMR and then purified by column chromatography on silica gel (EtOAc/PE =1/15) to provide the mixed compounds **3a** and **3a**- d_4 . The ¹H NMR data of the mixture suggest that the related KIE value is 4.0 (Figure S1). The KIE measurements were performed three runs giving the same result.

Figure S1. ¹H NMR spectrum of the mixed 3a and 3a-d₄ measured in CDCl₃.

References

- 1. W. C. Still, M. Kahn and A.Mitra, J. Org. Chem. 1978, 43, 2923.
- (a) L. Ackermann and A. Althammer, *Org. Lett.* 2006, **8**, 3457; (b) K. Gao, P.-S. Lee, T. Fujita, T. and N. Yoshikai, *J. Am. Chem. Soc.* 2010, **132**, 12249; (c) K. L. Billingsley and S. L. Buchwald, *Angew. Chem., Int. Ed.* 2008, **47**, 4695; (d) J.-H. Li, Q.-M. Zhu and Y.-X. Xie, *Tetrahedron* 2006, **62**, 10888; (e) V. Bonnet, F. Mongin, F. Trecourt, G. Queguiner and P. Knochel, *Tetrahedron* 2002, **58**, 4429.
- (a) T. Imamoto, N. Iwadate and K. Yoshida, Org. Lett. 2006, 8, 2289; (b) K. Gao and N. Yoshikai, J. Am. Chem. Soc. 2013, 135, 9279.
- 4. (a) D. J. Weix, D. Marković, M. Ueda and J. F. Hartwig, *Org. Lett.* 2009, 11, 2944; (b) S. Fan, F. Chen and X. Zhang, *Angew. Chem. Int. Ed.* 2011, 50, 5918.
- 5. H. Wang, N. Schröder and F. Glorius, Angew. Chem., Int. Ed., 2013, 52, 5386.

6. ¹H, ¹³C and ¹⁹F NMR Spectra

.70 Ċ

HSQC spectrum

¹H-¹H COSY spectrum

HMBC spectrum

S35

-102 -114 1 -118 -122 -106 -116 -96 -98 -100 -104 -108 -120 -124

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

108.0 -108.5 -109.0 -109.5 -110.0 -110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0

-109.0 -109.5 -110.0 -110.5 -111.0 -111.5 -112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0

^{:10}

10 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 0

<3.791 <3.777 -2.565

HSQC spectrum

