Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2016

Supporting Information

Direct Construction of Chiral Quaternary Dihydropyranones through Highly Enantioselective Organocatalytic Hetero-Diels-Alder Reactions of Olefinic Azlactones

Tai-Ping Gao^a, Dan Liu^a, Jun-Bing Lin^a, Xiu-Qin Hu^a, Zhu-Yin Wang^b and Peng-Fei Xu*^a

 ^a State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China.
^b College of Mechanics and Materials, Hohai University, Nanjing 210098, P. R. of China xupf@lzu.edu.cn

contents

1. General information2
2. General procedure for the synthesis of products 4 and analytical data3
3. General procedure for the synthesis of products 5 and analytical data 12
4. General procedure for the synthesis of product 6 and analytical data16
5. X-ray crystallographic data of compound 4g 17
6. NMR spectra of compounds 4 18
7. NMR spectra of compounds 5
8. NMR spectra of compound 6 70
9. HPLC spectra of compounds 4 72
10. HPLC spectra of compounds 5

1. General information

All glassware was thoroughly oven-dried. Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Thin-layer chromatography plates were visualized by exposure to ultraviolet light and/or staining with phosphomolybdic acid followed by heating on a hot plate. Flash chromatography was carried out using silica gel (200-300 mesh). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AM-400 (400 MHz). The spectra were recorded in CDCl₃ as solvent at room temperature, ¹H and ¹³C NMR chemical shifts are reported in ppm relative to the residual solvent peak. The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale (CDCl₃: $\delta_H = 7.27$ ppm, $\delta_{\rm C} = 77.00$ ppm). Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet), integration, coupling constant (Hz) and assignment. Data for ¹³C NMR are reported as chemical shift. IR spectra were recorded using Nicolet NEXUS 670 FT-IR instrument and are reported in wavenumbers (cm⁻¹). Optical rotation was measured on the Perkin Elmer 341 polarimeter with $[\alpha]_D$ values reported in degrees; concentration (c) is reported in g/100 mL. HRMS were performed on a Bruker Apex II mass instrument (ESI). Enantiomeric excess values were determined by HPLC with Daicel Chirapak AD-H columns on Agilent 1100 eluting with EtOH and n-hexane or with Chiralcel ID-H and IA-H columns on Waters 1525/2998 eluting with DCM and n-hexane. α -keto esters 1¹ and olefinic azalctones 2² were prepared according to the literature procedures.

1 J. Zhuang, C. Wang, F. Xie, W. Zhang, Tetrahedron, 2009, 65, 9797.

2 R. M. A. Motaleb, H. M. Bakeer, G. H. Tamam, W. A. A. Arafa, *J. Heterocyclic Chem.* 2012, **49**, 1071.

2. General procedure for the synthesis of products 4 and analytical data

To an oven-dried 25 ml Schlenk tube equipped with a stir bar was charged with catalyst **F** (0.01 mmol) and 4Å MS (100 mg). This tube was closed with a septum, evacuated, and backed-filled with N₂. To this mixture was added freshly distilled Toluene (1.0 mL), olefinic azlactones **2** (0.1 mmol) and α -keto esters **1** (0.3 mmol). The mixture was stirred at room temperature for 72 h under N₂ atmosphere. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica gel, mixtures of petroleum/ethyl acetate) to afford the pure product **4**.

(S)-ethyl 5-benzamido-6-oxo-2,4-diphenyl-3,6-dihydro-2H-pyran-2-carboxylate (4a)

White solid; 73% yield (32.2 mg); 95% ee; $[\alpha]_D^{20} = -169.8$ (*c* 0.27, CH₂Cl₂); mp 108–112 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 65:35), 1.0 mL/min, $\lambda = 230.16$ nm, $t_{R(minor)} = 26.3$ min, $t_{R(major)} = 14.1$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.70 (s, 1H), 7.67–7.01 (m, 4H), 7.42–7.49 (m, 4H), 7.35–7.41 (m, 6H), 7.29–7.32 (m, 1H), 4.24–4.33 (m, 2H), 3.98 (d, *J* = 18.0 Hz, 1H), 3.28 (d, *J* = 18.0 Hz, 1H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.2, 164.4, 163.5, 142.8, 140.0, 136.4, 133.8, 132.0, 129.3, 129.1, 128.8, 128.7, 128.6, 127.3, 126.9, 125.1, 120.9, 83.9, 63.2, 39.4, 14.0. IR (KBr, cm⁻¹): 3310, 2926, 2373, 1721, 1666, 1602, 1580, 1476, 1448, 1364, 1275, 1167, 1137, 1048, 715, 696, 585. HRMS (ESI) for C₂₇H₂₄NO₅ [M+H] ⁺ calcd. 442.1649, found 442.1642.

(S)-ethyl 5-benzamido-6-oxo-2-phenyl-4-(m-tolyl)-3,6-dihydro-2H-pyran-2-carb oxylate (4b)

White solid; 79% yield (35.9 mg); >99% ee; $[\alpha]_{D}^{20} = -68.7$ (*c* 1.65, CH₂Cl₂); mp 123–128 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 70:30), 1.0 mL/min, $\lambda = 280.16$ nm, $t_{R(minor)} = 22.3$ min, $t_{R(major)} = 55.3$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.67–7.70 (m, 5H), 7.36–7.48 (m, 6H), 7.22–7.29 (m, 3H), 7.11 (d, J = 7.2 Hz, 1H), 4.28 (q, 2H), 3.97 (d, J = 18 Hz, 1H), 3.27 (d, J = 18 Hz, 1H), 2.32 (s, 3H), 1.25 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.2, 164.6, 163.4, 143.2, 138.4, 136.8, 136.5, 133.9, 131.9, 130.2, 129.0, 128.8, 128.6, 128.5, 127.5, 127.3, 125.1, 124.0, 120.8, 83.8, 63.2, 39.7, 21.5, 14.0. IR (KBr, cm⁻¹): 3333, 2926, 2370, 1735, 1665, 1600, 1586, 1470, 1458, 1271, 1163, 1131, 787, 738, 703. HRMS (ESI) for C₂₈H₂₅NO₅ [M+H]⁺ calcd. 456.1805, found 456.1802.

(S)-ethyl 5-benzamido-6-oxo-2-phenyl-4-(p-tolyl)-3,6-dihydro-2H-pyran-2-carbo xylate (4c)

White solid; 76% yield (34.6 mg); 95% ee; $[\alpha]_{D}^{20} = -18.8$ (*c* 0.47, CH₂Cl₂); mp 81–84 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 50:50), 1.0 mL/min, $\lambda = 280.16$ nm, $t_{R(minor)} = 28.5$ min, $t_{R(major)} = 12.9$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.75 (s, 1H), 7.70 (d, J = 8.0 Hz, 4H), 7.37–7.50 (m, 6H), 7.17 (d, J = 8 Hz, 2H), 4.24–4.30 (m, 2H), 3.97 (d, J = 17.6 Hz, 2H), 3.26 (d, J = 17.6 Hz, 1H), 2.31 (s, 3H), 1.24 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.2, 164.4, 163.4, 143.2, 138.3, 136.7, 136.4, 133.9, 131.9, 130.2, 129.0, 128.8, 128.6, 128.5, 127.6, 127.3, 125.1, 124.0, 120.8, 83.8, 63.1, 39.3, 21.5, 14.0. IR (KBr, cm⁻¹): 3346, 3061, 2961, 2925, 2855, 1736, 1670, 1604, 1581, 1510, 1478, 1450, 1358, 1269, 1165, 1136, 1117, 1099, 1049, 820, 734, 699, 663. HRMS (ESI) for C₂₈H₂₅NO₅ [M+H]⁺ calcd. 456.1805, found 456.1797.

(S)-ethyl 5-benzamido-4-(4-methoxyphenyl)-6-oxo-2-phenyl-3,6-dihydro-2H-pyr an-2-carboxylate (4d)

White solid; 83% yield (39.1 mg); 91.5% ee; $[\alpha]_{D}^{20} = -128.5$ (*c* 0.90, CH₂Cl₂); mp 78–80 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 50:50), 1.0 mL/min, $\lambda = 230.16$ nm, $t_{R(minor)} = 40.2$ min, $t_{R(major)} = 13.9$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.86 (s, 1H), 769–7.71 (m, 4H), 7.35–7.49 (m, 8H), 6.87 (d, *J* = 8.8 Hz, 2H), 4.22–4.30 (m, 2H), 3.96 (d, *J* = 18 Hz, 1H), 3.76 (s, 3H), 3.24 (d, *J* = 18 Hz, 1H), 1.22 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.1, 164.5, 163.7, 160.2, 136.4, 133.7, 131.8, 128.9, 128.8, 128.7, 128.6, 128.5, 127.2, 125.0, 119.9, 114.1, 83.6, 63.1, 55.1, 39.1, 13.9. IR (KBr, cm⁻¹): 3347, 3062, 2925, 2853, 2373, 1736, 1686, 1665, 1605, 1510, 1477, 1359, 1268, 1164, 1131, 1075, 1101, 1049, 836, 772, 736, 703. HRMS (ESI) for C₂₈H₂₅NO₆ [M+H] ⁺ calcd. 472.1755, found 472.1747.

(S)-ethyl 5-benzamido-4-(3-bromophenyl)-6-oxo-2-phenyl-3,6-dihydro-2H-pyran-2carboxylate (**4e**)

White solid; 62% yield (32.2 mg); 97% ee; $[\alpha]_{D}^{20} = -100.6$ (*c* 0.91, CH₂Cl₂); mp 80–85°C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 50:50), 1.0 mL/min, $\lambda = 280.16$ nm, $t_{R(minor)} = 21.0$ min, $t_{R(major)} = 14.9$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.84 (s, 1H), 767–7.71 (m, 4H), 7.62 (s, 1H), 7.38–7.51 (m, 8H), 7.24 (d, *J* = 9.0 Hz, 1H), 4.25–4.31 (m, 2H), 3.92 (d, *J* = 18 Hz, 1H), 3.26 (d, *J* = 18 Hz, 1H), 1.24 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.0, 164.4, 163.3, 140.7, 139.0, 136.0, 133.6, 132.2, 132.0, 130.2, 129.8, 129.2, 128.8, 128.6, 127.2, 125.5, 125.0, 122.6, 121.4, 83.9, 63.2, 39.1, 14.0. IR (KBr, cm⁻¹): 3344, 3062, 2926, 2856, 2372, 1736, 1720, 1686, 1672, 1656, 1509, 1475, 1467, 1450, 1357, 1269, 1165, 1135, 1096, 1048, 791, 736, 703. HRMS (ESI) for C₂₇H₂₂BrNO₅ [M+H] ⁺ calcd. 520.0754, found 520.0748.

(S)-ethyl 5-benzamido-4-(4-fluorophenyl)-6-oxo-2-phenyl-3,6-dihydro-2H-pyran -2-carboxylate (4f)

White solid; 66% yield (30.3 mg); 96% ee; $[\alpha]_{D}^{20} = -72.1$ (*c* 1.35, CH₂Cl₂); mp 123–126 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 50:50), 1.0 mL/min, $\lambda = 230.16$ nm, $t_{R(minor)} = 27.8$ min, $t_{R(major)} = 15.5$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.84 (s, 1H), 768–7.70 (m, 4H), 746–7.50 (m, 4H), 7.37–7.44 (m, 4H), 7.05 (d, J = 8.8 Hz, 2H), 4.21–4.33 (m, 2H),

3.94 (d, J = 17.6 Hz, 1H), 3.26 (d, J = 17.6 Hz, 1H), 1.23 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.1, 164.3, 164.1, 163.5, 141.5, 136.2, 133.6, 133.0, 133.0, 132.1, 129.1, 129.0, 128.9, 128.8, 128.6, 127.2, 125.1, 120.9, 116.0, 115.8, 83.9, 63.2, 39.5, 14.0. IR (KBr, cm⁻¹): 3353, 3064, 2926, 2856, 2372, 1736, 1656, 1602, 1466, 1460, 1449, 1270, 1228, 1159, 1134, 841, 768, 738, 705, 662. HRMS (ESI) for C₂₇H₂₂FNO₅ [M+H] ⁺ calcd. 460.1555, found 460.1552.

(S)-ethyl 5-benzamido-6-oxo-2-phenyl-4-(4-(trifluoromethyl)phenyl)-3,6-dihydro -2H-pyran-2-carboxylate (4g)

White solid; 61% yield (31.0 mg); 96% ee; $[\alpha]_{D}^{20} = -17.8$ (*c* 1.13, CH₂Cl₂); mp 116–118 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 50:50), 1.0 mL/min, $\lambda = 230.16$ nm, $t_{R(minor)} = 10.6$ min, $t_{R(major)} = 7.05$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (s, 1H), 7.67–7.71 (m, 4H), 7.58–7.63 (m, 4H), 7.49–7.53 (m, 1H), 7.39–7.47 (m, 5H), 4.22–4.34 (m, 2H), 3.96 (d, *J* = 18 Hz, 1H), 3.29 (d, *J* = 18 Hz, 1H), 1.23 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.9, 164.1, 163.3, 140.9, 140.1, 136.0, 133.3, 132.2, 129.2, 128.8, 128.7, 127.3, 127.2, 125.7, 125.7, 125.0, 121.6, 84.1, 63.3, 39.2, 14.0. IR (KBr, cm⁻¹): 3324, 3065, 2927, 2373, 1739, 1617, 1509, 1477, 1450, 1410, 1324, 1272, 1167, 1127, 1065, 1017, 845, 699, 608. HRMS (ESI) for C₂₈H₂₂F₃NO₅ [M+H]⁺ calcd. 510.1523, found 510.1526.

(S)-ethyl 5-benzamido-4-(2,4-dichlorophenyl)-6-oxo-2-phenyl-3,6-dihydro-2H-py ran-2-carboxylate (4h)

White solid; 67% yield (34.1 mg); 98% ee; $[\alpha]_D^{20} = -25.9$ (*c* 0.39, CH₂Cl₂); mp 59–60 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 50:50), 1.0 mL/min, $\lambda = 280.16$ nm, $t_{R(minor)} = 20.6$ min, $t_{R(major)} = 12.6$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (s, 1H), 7.68–7.70 (m, 4H), 7.58 (d, *J* = 1.6 Hz, 1H), 7.50–7.54 (m, 1H), 7.35–7.47 (m, 6H), 7.33 (d, *J* = 1.6 Hz, 1H), 4.21–4.33 (m, 2H), 3.91 (d, *J* = 18 Hz, 1H), 3.25 (d, *J* = 18 Hz, 1H), 1.23 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.9, 164.3, 163.3, 138.7, 137.1, 135.9, 133.4, 133.3, 133.0, 132.3, 130.8, 129.3, 128.9, 128.9, 128.8, 127.2, 126.3, 125.0, 121.5, 84.0, 63.3, 39.0, 14.0. IR (KBr, cm⁻¹): 3349, 2925, 2855, 2373, 1737, 1656, 1601, 1581, 1510, 1475, 1383, 1271, 1199, 1165, 1133, 1097, 1049, 702. HRMS (ESI) for C₂₇H₂₁Cl₂NO₅ [M+H]⁺ calcd. 510.0870, found 510.0867.

(S)-ethyl 5-benzamido-4-(furan-2-yl)-6-oxo-2-phenyl-3,6-dihydro-2H-pyran-2-ca rboxylate (4i)

White solid; 63% yield (27.2 mg); 91% ee; $[\alpha]_{D}^{20} = -67.9$ (*c* 1.33, CH₂Cl₂); mp 82–85 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 50:50), 1.0 mL/min, $\lambda = 230.16$ nm, $t_{R(minor)} = 24.1$ min, $t_{R(major)} = 8.0$ min. ¹H NMR (400 MHz, CDCl₃): δ 8.07 (s, 1H), 7.91 (d, J = 7.2 Hz, 2H), 7.73 (d, J = 7.2 Hz, 2H), 7.53–7.58 (m, 2H), 7.39–7.49 (m, 5H), 6.81 (d, J = 3.6 Hz, 1H), 6.51–6.52 (m, 1H), 4.20–4.25 (m, 2H), 4.14 (d, J = 17.6 Hz, 1H), 3.27 (d, J = 18 Hz, 1H), 1.19 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.9, 165.0, 163.3, 148.9, 145.2, 136.6, 133.7, 132.2, 129.5, 129.0, 128.7, 128.7, 127.5, 125.1, 117.3, 116.2, 112.8, 83.3, 63.1, 35.1, 13.9. IR (KBr, cm⁻¹): 3342, 3063, 2924, 2367, 1736, 1686, 1628, 1509, 1475, 1450, 1270, 1166, 1138, 1107, 1051, 737, 702. HRMS (ESI) for C₂₅H₂₁NO₆ [M+H]⁺ calcd. 432.1442, found 432.1439.

(S)-ethyl 5-benzamido-4-(naphthalen-2-yl)-6-oxo-2-phenyl-3,6-dihydro-2H-pyra n-2-carboxylate (4j)

White solid; 63% yield (30.9 mg); 96% ee; $[\alpha]_{D}^{20} = -103.8$ (*c* 0.11, CH₂Cl₂); mp 93–95 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 50:50), 1.0 mL/min, $\lambda = 280.16$ nm, $t_{R(minor)} = 38.4$ min, $t_{R(major)} = 16.1$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, *J* = 7.6 Hz, 2H), 7.73 (d, *J* = 7.2 Hz, 3H), 7.54–7.58 (m, 2H), 7.38–7.50 (m, 6H), 7.07–7.09 (m, 1H), 4.26 (q, *J* = 6.8 Hz, 2H), 4.16 (d, *J* = 16.8 Hz, 1H), 3.36 (d, *J* = 16.8 Hz, 1H), 1.20 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.9, 166.3, 163.6, 137.9, 136.9, 136.5, 133.7, 132.2, 131.8, 130.7, 129.1, 128.8, 128.7, 127.6, 127.2, 125.1, 117.8, 83.2, 63.2, 37.8, 13.9. IR (KBr, cm⁻¹): 3339, 3059, 2959, 2926, 2854, 1734, 1672, 1600, 1581, 1507, 1475, 1450, 1365, 1270, 1164, 1132, 1098, 1075, 1049, 738, 702. HRMS (ESI) for C₃₁H₂₅NO₅ [M+H]⁺ calcd. 492.1805, found 492.1801.

(S)-ethyl 5-benzamido-6-oxo-4-phenyl-2-(o-tolyl)-3,6-dihydro-2H-pyran-2-carbo xylate (4k)

White solid; 72% yield (32.7 mg); 93% ee; $[\alpha]_{D}^{20} = -92.4$ (*c* 0.66, CH₂Cl₂); mp 116–118 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 50:50), 1.0 mL/min, $\lambda = 280.16$ nm, $t_{R(minor)} = 19.1$ min, $t_{R(major)} = 9.9$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.78 (s, 1H), 7.69 (d, J = 7.6 Hz, 2H), 7.54 (s, 1H), 7.46–7.50 (m, 4H), 7.35–7.40 (m, 4H), 7.28–7.34 (m, 2H), 7.21 (d, J = 7.6 Hz, 1H), 4.24–4.32 (m, 2H), 3.97 (d, J = 17.6 Hz, 1H), 3.27 (d, J = 17.6 Hz, 1H), 2.39 (s, 3H), 1.25 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.2, 164.4, 163.5, 142.9, 138.6, 136.9, 136.2, 133.7, 131.9, 129.8, 129.2, 128.6, 128.6, 128.5, 127.2, 126.9, 125.6, 122.0, 120.8, 83.9, 63.1, 39.3, 21.5, 14.0. IR (KBr, cm⁻¹): 3344, 3060, 2924, 2858, 2371, 1736, 1686, 1674, 1656, 1603, 1581, 1510, 1476, 1468, 1360, 1270, 1128, 1094, 1049, 702. HRMS (ESI) for C₂₈H₂₅NO₅ [M+H] ⁺ calcd. 456.1805, found 456.1808.

(S)-ethyl 5-benzamido-6-oxo-4-phenyl-2-(p-tolyl)-3,6-dihydro-2H-pyran-2-carbo xylate (4l)

White solid; 71% yield (32.2 mg); 91% ee; $[\alpha]_{D}^{20} = -250.9$ (*c* 0.30, CH₂Cl₂); mp 120–122 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 50:50), 1.0 mL/min, $\lambda = 230.16$ nm, $t_{R(minor)} = 57.4$ min, $t_{R(major)} = 13.2$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.74 (s, 1H), 7.71 (d, *J* = 7.6 Hz, 4H), 7.43–7.48 (m, 2H), 7.38–7.41 (m, 6H), 7.17 (d, *J* = 8.0 Hz, 2H), 4.23–4.31 (m, 2H), 3.97 (d, *J* = 17.6 Hz, 1H), 3.25 (d, *J* = 17.6 Hz, 1H), 2.31 (s, 1H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.1, 164.4, 163.5, 142.7, 139.5, 136.4, 133.9, 133.9, 131.9, 129.4, 129.0, 128.7, 128.5, 127.3, 126.8, 125.1, 120.4, 83.8, 63.1, 39.3, 21.3, 14.0. IR (KBr, cm⁻¹): 3341, 3061, 2925, 2371, 1736, 1670, 1603, 1581, 1510, 1477, 1449, 1357, 1271, 1163, 1136, 1100, 820, 699. HRMS (ESI) for C₂₈H₂₅NO₅ [M+H]⁺ calcd. 455.1805, found 455.1802.

(S)-ethyl 5-benzamido-2-(2-bromophenyl)-6-oxo-4-phenyl-3,6-dihydro-2H-pyran -2-carboxylate (4m)

White solid; 62% yield (32.2 mg); 90.0% ee; $[\alpha]_D^{20} = -70.3$ (*c* 0.56, CH₂Cl₂); mp 114–118 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 50:50), 1.0 mL/min, $\lambda = 254.4$ nm, $t_{R(minor)} = 49.2$ min, $t_{R(major)} = 9.3$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.89 (s, 1H), 7.76–7.88 (m, 1H), 7.64–7.69 (m, 3H), 7.52–7.54 (m, 1H), 7.46–4.49 (m, 3H), 7.25–7.40 (m, 6H), 4.23–4.36 (m, 2H), 3.94 (d, *J* = 17.6 Hz, 1H), 3.24 (d, *J* = 17.6 Hz, 1H), 1.25 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.7, 164.4, 163.1, 142.9, 142.8, 138.5, 136.7, 133.6, 132.2, 132.0, 130.3, 129.4, 128.7, 128.6, 128.3, 127.2, 126.9, 123.7, 123.0, 120.9, 83.2, 63.5, 39.5, 14.0. IR (KBr, cm⁻¹): 3418, 2955, 2923, 2854, 2366, 1736, 1655, 1638, 1461, 1389, 1265, 1157, 1123, 1096, 740. HRMS (ESI) for C₂₇H₂₂BrNO₅ [M+H] ⁺ calcd. 520.0754, found 520.0751.

(S)-ethyl 5-benzamido-2-(4-bromophenyl)-6-oxo-4-phenyl-3,6-dihydro-2H-pyran -2-carboxylate (4n)

White solid; 69% yield (35.8 mg); 95% ee; $[\alpha]_{D}^{20} = -101.6$ (*c* 0.92, CH₂Cl₂); mp 78–83 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 50:50), 1.0 mL/min, $\lambda = 230.16$ nm, $t_{R(minor)} = 73.7$ min, $t_{R(major)} = 13.5$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.76 (s, 1H), 7.68 (d, J = 7.2 Hz, 2H), 7.55–7.61 (m, 4H), 7.46–7.50 (m, 3H), 7.31–7.40 (m, 4H), 7.29–7.31 (m, 1H), 4.22–4.34 (m, 2H), 3.94 (d, J = 18.0 Hz, 1H), 3.24 (d, J = 18.0 Hz, 1H), 1.25 (t, J = 5.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 168.7, 163.4, 162.1, 141.7, 135.7, 134.4, 132.6, 131.0, 130.9, 128.4, 127.7, 127.5, 126.2, 125.8, 125.8, 122.4, 119.9, 82.4, 62.4, 38.3, 12.9. IR (KBr, cm⁻¹): 3335, 2960, 2924, 2855, 1736, 1685, 1668, 1581, 1509, 1477, 1445, 1360, 1269, 1164, 1083, 1049, 1012, 765, 704. HRMS (ESI) for C₂₇H₂₂BrNO₅ [M+H]⁺ calcd. 520.0754, found 520.0750.

(S)-ethyl 5-benzamido-6-oxo-4-phenyl-2-(4-(trifluoromethyl)phenyl)-3,6-dihydro -2H-pyran-2-carboxylate (40)

White solid; 80% yield (40.7 mg); 97% ee; $[\alpha]_{D}^{20} = -52.9$ (*c* 0.17, CH₂Cl₂); mp 118–120 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 50:50), 1.0 mL/min, $\lambda = 230.16$ nm, t_{R(minor)} = 47.6 min, t_{R(major)} = 8.5 min. ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 8.4 Hz, 2H), 7.75 (s, 1H), 7.67–7.71 (m, 4H), 7.47–7.51 (m, 3H), 7.36–7.41 (m, 4H), 7.30–7.33 (m, 1H), 4.23–4.36 (m, 2H), 3.99 (d, J = 17.6 Hz, 1H), 3.26 (d, J = 17.6 Hz, 1H), 1.25 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.6, 164.5, 162.9, 142.8, 140.1, 136.6, 133.6, 132.0, 129.4, 128.7, 128.6, 127.2, 126.9, 125.8, 125.8, 125.7, 125.7, 125.6, 120.9, 83.3, 63.5, 39.5, 13.9. IR (KBr, cm⁻¹): 3394, 3307, 2956, 2925, 2854, 2376, 1725, 1668, 1509, 1477, 1413, 1328, 1164, 1130, 1108, 1071, 741, 716. HRMS (ESI) for C₂₈H₂₂F₃NO₅ [M+H] ⁺ calcd. 510.1523, found 510.1519.

(S)-ethyl 5-benzamido-2-(4-chlorophenyl)-6-oxo-4-phenyl-3,6-dihydro-2H-pyran -2-carboxylate (4p)

White solid; 73% yield (34.7 mg); 96% ee; $[\alpha]_{D}^{20} = -69.9$ (*c* 0.27, CH₂Cl₂); mp 103–105 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 50:50), 1.0 mL/min, $\lambda = 280.16$ nm, $t_{R(minor)} = 64.7$ min, $t_{R(major)} = 13.1$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.77 (s, 1H), 7.64–7.68 (m, 4H), 7.45–7.48 (m, 3H), 7.32–7.41 (m, 6H), 7.28–7.32 (m, 1H), 4.21–4.34 (m, 2H), 3.94 (d, *J* = 18.0 Hz, 1H), 3.24 (d, *J* = 18.0 Hz, 1H), 1.24 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.8, 164.5, 163.1, 142.9, 136.7, 135.2, 135.0, 133.6, 131.9, 129.4, 129.0, 128.7, 128.6, 127.2, 126.9, 126.6, 121.0, 83.4, 63.4, 39.3, 14.0. IR (KBr, cm⁻¹): 3340, 2957, 2925, 2854, 1737, 1672, 1600, 1492, 1477, 1359, 1270, 1164, 1094, 1049, 1015, 765, 704, 594. HRMS (ESI) for C₂₇H₂₂CINO₅ [M+H]⁺ calcd. 476.1259, found 476.1262.

(S)-ethyl 5-benzamido-2-(2-bromo-4-chlorophenyl)-6-oxo-4-phenyl-3,6-dihydro-2H-pyran-2-carboxylate (4q)

White solid; 77% yield (39.2 mg); >99% ee; $[\alpha]_{D}^{20}$ = -89.4 (*c* 0.37, CH₂Cl₂); mp 116–119 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 50:50), 1.0 mL/min, λ = 254.4 nm, t_{R(minor)} = 48.16 min, t_{R(major)} = 12.4 min. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, *J* = 7.6 Hz, 2H), 7.23 (d, *J*

= 7.2 Hz, 3H), 7.54–7.57 (m, 2H), 7.38–7.50 (m, 6H), 7.07–7.09 (m, 1H), 4.26 (q, J = 6.8 Hz, 2H), 4.16 (d, J = 16.8 Hz, 1H), 3.36 (d, J = 16.8 Hz, 1H), 1.20 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.9, 164.2, 163.3, 138.7, 137.1, 135.9, 133.4, 133.3, 133.0, 132.3, 130.7, 129.2, 128.9, 128.9, 127.2, 126.2, 125.0, 121.5, 84.0, 63.3, 39.0, 14.0. IR (KBr, cm⁻¹): 3336, 2956, 2923, 2854, 2374, 1736, 1665, 1657, 1509, 1501, 1475, 1450, 1271, 1167, 1135, 1091, 1048, 702. HRMS (ESI) for C₂₇H₂₁Cl₂NO₅ [M+H]⁺ calcd. 510.0870, found 510.0864.

(S)-methyl 5-benzamido-6-oxo-2,4-diphenyl-3,6-dihydro-2H-pyran-2-carboxylate (4r).

White solid; 70% yield (29.9 mg); 92% ee; $[\alpha]_{D}^{20} = -70.5$ (*c* 1.39, CH₂Cl₂); mp 119–125 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 60:40), 1.0 mL/min, $\lambda = 230.16$ nm, $t_{R(minor)} = 22.5$ min, $t_{R(major)} = 18.1$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.67–7.71 (m, 5H), 7.43–7.49 (m, 4H), 7.37–7.42 (m, 7H), 7.30–7.35 (m, 1H), 3.96 (d, *J* = 18.0 Hz, 1H), 3.83 (s, 3H), 3.30 (d, *J* = 18.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 170.7, 164.7, 163.2, 143.8, 136.7, 136.3, 133.6, 131.9, 129.4, 129.1, 128.8, 128.7, 128.5, 127.3, 126.9, 125.1, 121.0, 84.1, 53.9, 39.5. IR (KBr, cm⁻¹): 3317, 3062, 2954, 2924, 2854, 1727, 1507, 1475, 1449, 1275, 1166, 1136, 1047, 738, 715, 696. HRMS (ESI) for C₂₆H₂₁NO₅ [M+H] ⁺ calcd. 428.1492, found 428.1488.

(S)-isopropyl 5-benzamido-6-oxo-2,4-diphenyl-3,6-dihydro-2H-pyran-2-carboxyl ate (4s)

White solid; 52% yield (23.6 mg); 96.7% ee; $[\alpha]_{D}^{20} = -11.7$ (*c* 0.94, CH₂Cl₂); mp 114–120 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 50:50), 1.0 mL/min, $\lambda = 280.16$ nm, $t_{R(minor)} = 21.6$ min, $t_{R(major)} = 10.7$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.81 (s, 1H), 7.67–7.72 (m, 4H), 7.44–7.50 (m, 5H), 7.32–7.42 (m, 5H), 7.28–7.30 (m, 2H), 5.08–5.15 (m, 2H), 3.99 (d, *J* = 18.0 Hz, 1H), 3.26 (d, *J* = 18.0 Hz, 1H), 1.25 (d, *J* = 6.0 Hz, 3H), 1.18 (d, *J* = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 168.5, 163.0, 162.6, 140.8, 136.1, 135.4, 132.8, 130.9, 128.2, 128.0, 127.7, 127.6, 127.6, 126.2, 125.9, 124.0, 119.7, 82.8, 70.2, 38.3, 20.5, 20.4. IR (KBr, cm⁻¹): 3350, 3061, 2924, 2856, 2374, 1737, 1672, 1602,

1580, 1477, 1376, 1359, 1271, 1168, 1135, 1101, 1046, 700. HRMS (ESI) for $C_{28}H_{25}NO_5$ [M+H]⁺ calcd. 456.1805, found 456.1800.

3. General procedure for the synthesis of products 5 and analytical data

To an oven-dried 25 ml Schlenk tube equipped with a stir bar was charged with catalyst **F** (0.01 mmol) and 4Å MS (100 mg). This tube was closed with a septum, evacuated, and backed-filled with N₂. To this mixture was added freshly distilled Toluene (1.0 mL), olefinic azlactones **2** (0.1 mmol) and α -keto esters **3** (0.3 mmol). The mixture was stirred at room temperature for 72 h under N₂ atmosphere. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica gel, mixtures of petroleum/ethyl acetate) to afford the pure product **5**.

(S,E)-ethyl 5-benzamido-6-oxo-4-phenyl-2-styryl-3,6-dihydro-2H-pyran-2-carbo xylate (5a)

White solid; 88% yield (41.1 mg); 89% ee; $[\alpha]_{D}^{20} = -111.6$ (*c* 0.83, CH₂Cl₂); mp 78–80 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 30:70), 1.0 mL/min, $\lambda = 310.0$ nm, $t_{R(minor)} = 7.5$ min, $t_{R(major)} = 8.2$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.79 (s, 1H), 7.68 (d, J = 7.6 Hz, 2H), 7.42–7.49 (m, 5H), 7.33–7.39 (m, 6H), 7.25–7.31 (m, 2H), 7.02 (d, J = 16.0 Hz, 1H), 6.38 (d, J = 16.0 Hz, 1H), 4.32 (q, J = 6.8 Hz, 2H), 3.70 (d, J = 18.0 Hz, 1H), 3.16 (d, J = 18.0 Hz, 1H), 1.28 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.9, 164.3, 163.5, 142.0, 136.8, 135.3, 133.7, 132.7, 131.9, 129.2, 128.7, 128.6, 128.6, 128.5, 127.2, 126.8, 124.0, 120.8, 83.0, 63.2, 38.9, 14.0. IR (KBr, cm⁻¹): 3344, 2926, 2854, 2371, 1732, 1671, 1647, 1474, 1447, 1358, 1265, 1174, 1094, 765, 739, 700. HRMS (ESI) for C₂₉H₂₅NO₅ [M+H] ⁺ calcd. 468.1805, found 468.1811.

(S,E)-ethyl 5-benzamido-2-(3-bromostyryl)-6-oxo-4-phenyl-3,6-dihydro-2H-pyran-2-carbox ylate (5b)

White solid; 76% yield (41.4 mg); 93% ee; $[\alpha]_D^{20} = -190.8$ (*c* 2.51, CH₂Cl₂); mp 90–92 °C; The enantiomeric excess was determined by HPLC with an IA-H column. (*n*-hexane: DCM = 50:50), 1.0 mL/min, $\lambda = 280.0$ nm, $t_{R(minor)} = 8.6$ min, $t_{R(major)} = 9.2$ min.¹H NMR (400 MHz, CDCl₃): δ 7.79 (s, 1H), 7.67 (d, J = 7.6 Hz, 2H), 7.57 (s, 1H), 7.43–7.49 (m, 3H), 7.25–7.40 (m, 7H), 7.19–7.23 (m, 1H), 6.96 (d, J = 16.0 Hz, 1H), 6.38 (d, J = 16.0 Hz, 1H), 4.33 (q, J = 7.2 Hz, 2H), 3.68 (d, J = 18.0 Hz, 1H), 3.15 (d, J = 18.0 Hz, 1H), 1.29 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.6, 164.4, 163.3, 141.9, 137.4, 136.7, 133.7, 131.9, 131.4, 131.3, 130.2, 129.5, 129.3, 128.6, 128.5, 127.2, 126.8, 125.6, 125.5, 122.8, 120.8, 82.8, 63.3, 38.9, 14.0. IR (KBr, cm⁻¹): 3346, 2923, 2854, 2372, 1736, 1668, 1510, 1467, 1377, 1265, 1169, 1095, 766, 738, 702. HRMS (ESI) for C₂₉H₂₄BrNO₅ [M+H]⁺ calcd. 546.0911, found 546.0924.

(S,E)-ethyl 5-benzamido-2-(4-bromostyryl)-6-oxo-4-phenyl-3,6-dihydro-2H-pyran-2-carbox ylate (5c)

White solid; 74% yield (40.3 mg); 91% ee; $[\alpha]_{D}^{20} = -182.2$ (*c* 1.29, CH₂Cl₂); mp 82–84 °C; The enantiomeric excess was determined by HPLC with an IA-H column. (*n*-hexane: DCM = 50:50), 1.0 mL/min, $\lambda = 280.0$ nm, $t_{R(minor)} = 9.2$ min, $t_{R(major)} = 10.2$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.78 (s, 1H), 7.67 (d, J = 7.2 Hz, 2H), 7.43–7.48 (m, 5H), 7.33–7.39 (m, 4H), 7.25–7.30 (m, 3H), 6.96 (d, J = 16.0 Hz, 1H), 6.37 (d, J = 16.0 Hz, 1H), 4.29–4.35 (m, 2H), 3.68 (d, J = 18.0 Hz, 1H), 3.14 (d, J = 18.0 Hz, 1H), 1.28 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.7, 164.3, 163.4, 141.9, 136.7, 134.2, 133.7, 131.9, 131.8, 131.5, 129.3, 128.6, 128.5, 128.3, 127.2, 126.8, 124.7, 122.6, 120.8, 82.8, 63.2, 38.9, 14.0. IR (KBr, cm⁻¹): 3347, 3057, 2924, 2854, 2372, 1736, 1581, 1465, 1377, 1363, 1264, 1169, 1072, 1010, 970, 856, 808, 742. HRMS (ESI) for C₂₉H₂₄BrNO₅ [M+H] ⁺ calcd. 546.0911, found 546.0925.

(S,E)-ethyl 5-benzamido-2-(4-methylstyryl)-6-oxo-4-phenyl-3,6-dihydro-2H-pyran-2-carbox ylate (5d)

White solid; 83% yield (39.9 mg); 86% ee; $[\alpha]_{D}^{20} = -72.7$ (*c* 1.57, CH₂Cl₂); mp 69–70 °C; The enantiomeric excess was determined by HPLC with an IA-H column. (*n*-hexane: DCM = 50:50), 1.0 mL/min, $\lambda = 280.0$ nm, $t_{R(minor)} = 7.9$ min, $t_{R(major)} = 8.6$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.77 (s, 1H), 7.67 (d, *J* = 7.2 Hz, 2H), 7.43–7.49 (m, 3H), 7.25–7.39 (m, 7H), 7.14–7.16 (m, 2H), 6.97 (d, *J* = 16.0 Hz, 1H), 6.32 (d, *J* = 16.0 Hz, 1H), 4.32 (q, *J* = 7.2 Hz, 2H), 3.69 (d, *J* = 18.0 Hz, 1H), 3.15 (d, *J* = 18.0 Hz, 1H), 2.34 (s, 3H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.9, 164.3, 163.6, 141.9, 138.6, 136.9, 133.8, 132.6, 132.5, 131.9, 129.4, 129.2, 128.6, 128.5, 127.2, 126.8, 126.8, 122.9, 120.7, 83.1, 63.1, 39.0, 21.2, 14.0. IR (KBr, cm⁻¹): 3394, 2924, 2854, 2371, 1735, 16743, 1464, 1377, 1265, 1172, 1093, 1019, 740. HRMS (ESI) for C₃₀H₂₇NO₅ [M+H]⁺ calcd. 482.1962, found 482.1973.

(S,E)-ethyl 5-benzamido-2-(4-methoxystyryl)-6-oxo-4-phenyl-3,6-dihydro-2H-pyran-2-carbo xylate (5e)

White solid; 88% yield (43.7 mg); 87% ee; $[\alpha]_D^{20} = -57.9$ (*c* 1.07, CH₂Cl₂); mp 67–70 °C; The enantiomeric excess was determined by HPLC with an IA-H column. (*n*-hexane: DCM = 50:50), 1.0 mL/min, $\lambda = 280.0$ nm, $t_{R(minor)} = 9.1$ min, $t_{R(major)} = 10.1$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.77 (s, 1H), 7.67 (d, J = 7.6 Hz, 2H), 7.43–7.49 (m, 3H), 7.30–7.39 (m, 6H), 7.25–7.29 (m, 1H), 6.94 (d, J = 16.0 Hz, 1H), 6.88 (d, J = 8.8 Hz, 2H), 6.24 (d, J = 16.0 Hz, 1H), 4.32 (q, J = 7.2 Hz, 2H), 3.81 (s, 3H), 3.69 (d, J = 17.6 Hz, 1H), 3.15 (d, J = 18.0 Hz, 1H), 1.28 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.0, 164.3, 163.6, 160.0, 142.0, 136.9, 133.8, 132.2, 131.9, 129.2, 128.6, 128.5, 128.2, 128.0, 127.2, 126.8, 121.7, 120.7, 114.1, 83.1, 63.1, 55.3, 39.0, 14.1. IR (KBr, cm⁻¹): 3390, 2959, 2927, 1735, 1664, 1512, 1465, 1264, 1174, 1029, 742, 706. HRMS (ESI) for C₃₀H₂₇NO₆ [M+H]⁺ calcd. 498.1911, found 498.1922.

(S,E)-ethyl 5-benzamido-2-(4-chlorostyryl)-6-oxo-4-phenyl-3,6-dihydro-2H-pyran-2-carboxy late (5f)

White solid; 80% yield (40.1 mg); 93% ee; $[\alpha]_{D}^{20} = -156.6$ (*c* 1.17, CH₂Cl₂); mp 77–80 °C; The enantiomeric excess was determined by HPLC with an IA-H column. (*n*-hexane: DCM = 50:50), 1.0 mL/min, $\lambda = 280.0$ nm, $t_{R(minor)} = 14.5$ min, $t_{R(major)} = 12.6$ min. ¹H NMR (400 MHz, CDCl₃): δ 7.78 (s, 1H), 7.67 (d, J = 7.2 Hz, 2H), 7.43–7.49 (m, 3H), 7.25–7.39 (m, 9H), 6.97 (d, J = 16.0 Hz, 1H), 6.35 (d, J = 16.0 Hz, 2H), 4.32 (q, J = 7.2 Hz, 2H), 3.68 (d, J = 18.0 Hz, 1H), 3.15 (d, J = 18.0 Hz, 1H), 1.28 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.7, 64.3, 163.4, 141.9, 136.7, 134.4, 133.8, 133.7, 131.9, 131.5, 129.3, 128.9, 128.6, 128.5, 128.1, 127.2, 126.8, 124.6, 120.8, 82.8, 63.2, 38.9, 14.0. IR (KBr, cm⁻¹): 3400, 3058, 2958, 2927, 2854, 2371, 1733, 1685, 1467, 1265, 1173, 1092, 1014, 740, 704. HRMS (ESI) for C₂₉H₂₄ClNO₅ [M+H] ⁺ calcd. 502.1416, found 502.1430.

(S,E)-methyl 5-benzamido-6-oxo-4-phenyl-2-styryl-3,6-dihydro-2H-pyran-2-car boxylate (5g)

White solid; 79% yield (35.8 mg); 84% ee; $[\alpha]_{D}^{20} = -128.7$ (*c* 1.15, CH₂Cl₂); mp 196–200 °C; The enantiomeric excess was determined by HPLC with an AD-H column. (*n*-hexane: EtOH = 30:70), 1.0 mL/min, $\lambda = 254.4$ nm, t_{R(minor)} = 69.0 min, t_{R(major)} = 9.5 min. ¹H NMR (400 MHz, CDCl₃): δ 7.67–7.71 (m, 3H), 7.40–7.50 (m, 5H), 7.32–7.38 (m, 6H), 7.25–7.30 (m, 2H), 7.02 (d, *J* = 16.0 Hz, 1H), 6.37 (d, *J* = 16.0 Hz, 1H), 3.87 (s, 3H), 3.70 (d, *J* = 18.0 Hz, 1H), 3.18 (d, *J* = 18.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 169.4, 163.6, 162.3, 141.9, 135.6, 134.2, 132.6, 131.8, 130.9, 128.3, 127.7, 127.7, 127.5, 126.2, 125.9, 122.8, 119.9, 82.2, 52.8, 37.9. IR (KBr, cm⁻¹): 3360, 2955, 2927, 2367, 1737, 1666, 1474, 1265, 1167, 1047, 969, 739, 704. HRMS (ESI) for C₂₈H₂₄NO₅ [M+H]⁺ calcd. 454.1649, found 454.1653.

4. General procedure for the synthesis of product 6 and analytical data

A solution of 4p (47.6 mg, 0.1 mmol), EtOH (2 mL) and hydrazine hydrate (52.3 mg, 1.6 mmol) was stirred at room temperature for 3 h and monitored by TLC. After the reaction was completed, the volatile components were evaporated in vacuo to give the product **6**.

(S,Z)-ethyl 5-benzamido-2-(4-chlorophenyl)-6-hydrazinyl-2-hydroxy-6-oxo-4-ph enylhex-4-enoate (6)

White solid; 98% yield (49.7 mg); mp 125–128 °C; ¹H NMR (400 MHz, d_6 -DMSO): δ 9.73 (s, 1H), 9.32 (s, 1H), 7.87 (s, 1H), 7.67 (d, J = 7.2 Hz, 2H), 7.44–7.50 (m, 3H), 7.33–7.37 (m, 2H), 7.22 (d, J = 8.0 Hz, 2H), 7.10 (s, 5H), 4.54 (br, 2H), 3.73 (d, J = 13.2 Hz, 1H), 3.54 (m, 1H), 3.35 (d, J = 10.4 Hz, 1H), 0.92 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, d_6 -DMSO): δ 172.9, 166.4, 165.7, 142.9, 139.1, 138.7, 134.2, 132.3, 131.8, 129.8, 129.1, 128.4, 128.3, 128.0, 127.9, 127.7, 127.6, 76.5, 61.0, 43.7, 14.0. IR (KBr, cm⁻¹): 3268, 2926, 2370, 1739, 1655, 1647, 1639, 1510, 1476, 1278, 1249, 1212, 1093, 727, 703. HRMS (ESI) for C₂₇H₂₇ClN₃O₅ [M+H] ⁺ calcd. 508.1634, found 508.1646.

5. X-ray crystallographic data of compound **4g**

Datablock:

Bond precision:	C-C = 0.0065	A V	Wavelength=1.54184							
Cell:	a=9.1158(3)	b=9.8126(3)	c=28.3116(9)							
	alpha=90	beta=90	gamma=90							
Temperature:	294 K									
	Calculated	Reported								
Volume	2532.46(14)		2532.48(14)							
Space group	P 21 21 21		P 21 21 21							
Hall group	P 2ac 2ab		P 2ac 2ab							
Moiety formula	C28 H22 F3 N	05	C28 H22 F3 N O5							
Sum formula	C28 H22 F3 N	05	C28 H22 F3 N O5							
Mr	509.47		509.47							
Dx,g cm-3	1.336		1.336							
Z	4		4							
Mu (mm-1)	0.903		0.903							
F000	1056.0		1056.0							
F000'	1059.87									
h,k,lmax	11,11,34		10,11,34							
Nref	4772[2733]		4094							
Tmin,Tmax	0.788,0.939	(0.737,1.000							
Tmin'	0.770									
Correction method	= MULTI-SCAN									
Data completeness=	= 1.50/0.86	Theta	Theta(max)= 69.720							
R(reflections)= 0.05	533(2681)	wR2 (r	wR2(reflections)= 0.1481(4094)							
S = 1.013		Npar= 367								

6. NMR spectra of compounds 4

~~	~	1.00	~	· · ·	~	1000	~			~		~	~	-	~	~	~	
Hz			MHz		nsec		MHz	ļ		Sec	×	usec	nsec		sec	Ηz	Ξz	

Sec Sec

S28

S36

Sec csec

7. NMR spectra of compounds 5

8. NMR spectra of compound 6

9. HPLC spectra of compounds 4

4a HPLC analysis using chiral AD-H Column (*n*-hexane: EtOH = 65:35, 1.0 mL/min)

473.62268

26.325

5.66661

2.4786

2

230.16 nm

4b HPLC analysis using chiral AD-H Column (*n*-hexane: EtOH = 70:30, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.16 nm	22.587	1.17552e4	166.25552	50.2197
2	PDA 280.16 nm	56.686	1.16524e4	61.50541	49.7803

4c HPLC analysis using chiral AD-H Column (*n*-hexane: EtOH = 50:50, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.16 nm	13.013	2.78419e4	667.63483	50.2931
2	PDA 280.16 nm	28.526	2.75173e4	265.12363	49.7069

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.16 nm	12.902	8693.22754	214.92070	97.5926
2	PDA 280.16 nm	28.535	214.44049	2.70033	2.4074

4d HPLC analysis using chiral AD-H Column (*n*-hexane: EtOH = 50:50, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 230.16 nm	13.801	6.73970e4	1298.55298	48.8801
2	PDA 230.16 nm	39.272	7.04854e4	452.23926	51.1199

4e HPLC analysis using chiral AD-H Column (*n*-hexane: EtOH = 50:50, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.16 nm	15.599	1.07801e4	160.41425	49.0136
2	PDA 280.16 nm	20.952	1.12140e4	124.56598	50.9864

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.16 nm	14.987	3.79199e4	525.66583	98.5521
2	PDA 280.16 nm	21.030	557.10852	6.94353	1.4479

4f HPLC analysis using chiral AD-H Column (*n*-hexane: EtOH = 60:40, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 230.16 nm	16.469	2.55653e4	457.23441	49.4744
2	PDA 230.16 nm	29.039	2.61085e4	247.77898	50.5256

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 230.16 nm	15.522	5.57031e4	960.58618	98.2575
2	PDA 230.16 nm	27.826	987.83948	9.91690	1.7425

4g HPLC analysis using chiral AD-H Column (*n*-hexane: EtOH = 50:50, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 230.16 nm	7.068	2.64403e4	981.43048	50.0956
2	PDA 230.16 nm	10.594	2.63393e4	639.64905	49.9044

4h HPLC analysis using chiral AD-H Column (*n*-hexane: EtOH = 50:50, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.16 nm	13.566	1.64277e4	335.72144	49.8683
2	PDA 280.16 nm	20.811	1.65145e4	200.89761	50.1317

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.16 nm	12.621	1.58389e5	1945.46082	99.0719
2	PDA 280.16 nm	20.646	1483.82394	22.72461	0.9281

4i HPLC analysis using chiral AD-H Column (*n*-hexane: EtOH = 50:50, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 230.16 nm	8.091	6206.48145	212.42874	50.0651
2	PDA 230.16 nm	24.482	6190.35205	68.21718	49.9349

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 230.16 nm	8.012	1.48405e4	506.72058	95.5997
2	PDA 230.16 nm	24.050	683.07977	8.12337	4.4003

`	10	20			
Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.16 nm	16.239	3.19464e4	491.58728	49.6392
2	PDA 280.16 nm	38.700	3.24108e4	189.12885	50.3608

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.16 nm	16.107	3.62413e4	558.87482	98.0730
2	PDA 280.16 nm	38.404	712.08362	4.85604	1.9270

4k HPLC analysis using chiral AD-H Column ((n-hexane: EtOH = 50:50, 1.0 mL/min)
---	---------------------------------------

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.16 nm	10.001	6.07063e4	1724.97791	49.1599
2	PDA 280.16 nm	18.082	6.27811e4	757.72504	50.8401

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.16 nm	9.900	9.92224e4	2114.36694	96.6731
2	PDA 280.16 nm	19.167	3414.64209	46.77760	3.3269

4l HPLC analysis using chiral AD-H Column (*n*-hexane: EtOH = 50:50, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 230.16 nm	13.262	2.26318e4	523.30908	49.3955
2	PDA 230.16 nm	55.113	2.31858e4	100.86430	50.6045

4m HPLC analysis using chiral AD-H Column (*n*-hexane: EtOH = 50:50, 1.0 mL/min)

49.254

1643.75293

9.03994

5.0204

2

PDA 254.4 nm

4n HPLC analysis using chiral AD-H Column (*n*-hexane: EtOH = 50:50, 1.0 mL/min)

1.65940e4

53.77774

75.229

2

PDA 230.16 nm

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 230.16 nm	13.531	8.42408e4	1872.19104	97.5967
2	PDA 230.16 nm	73.797	2074.41528	6.90655	2.4033

40 HPLC analysis using chiral AD-H Column (*n*-hexane: EtOH = 50:50, 1.0 mL/min)

	DAD1 D, Sig=230,	16 Ref=360,100 (GA	OTP\GAOTP2014092	25-4.D)			
mAU	501						
800 -	- CC	5					
700 -	-						
600 -	-						
500 -	-						
400 -	-						
300 -	-						
200 -							
100 -						.513	
0 -		\				47	
	0	10	20	30	40	50	60 min

2.18199e4

110.94320

2

PDA 230.16 nm

46.682

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 230.16 nm	8.501	2.36574e4	858.63104	98.5709
2	PDA 230.16 nm	47.513	342.97812	2.45105	1.4291

4p HPLC analysis using chiral AD-H Column (*n*-hexane: EtOH = 50:50, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.16 nm	12.678	1.11332e4	272.55786	50.0134
2	PDA 280.16 nm	61.782	1.11272e4	40.80041	49.9866

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.16 nm	13.161	1.27049e4	300.39340	97.9392
2	PDA 280.16 nm	64.790	267.33527	1.22478	2.0608

5767.11230

30.51305

50.8353

2

PDA 254.4 nm

4q HPLC analysis using chiral AD-H Column (*n*-hexane: EtOH = 50:50, 1.0 mL/min)

4r HPLC analysis using chiral AD-H Column (*n*-hexane: EtOH = 60:40, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 230.16 nm	18.430	2225.48486	34.29328	49.9772
2	PDA 230.16 nm	22.507	2227.51147	27.10798	50.0228

Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 230.16 nm	18.194	4.06911e4	609.39734	96.2154
2	PDA 230.16 nm	22.511	1600.67212	19.90050	3.7848

4s HPLC analysis u	sing chiral AD-H	Column (n-hexane:	EtOH = 50:50,	1.0 mL/min)
--------------------	------------------	-------------------	---------------	-------------

- ·		- ·			
Peak	Processed	Retention	Peak area	Peak height	Peak area (%)
	channel	time (min)	(mAU*s)	(mAU)	
1	PDA 280.16 nm	10.563	2.51831e4	769.90417	49.5167
2	PDA 280.16 nm	20.957	2.56748e4	340.99194	50.4833

10. HPLC spectra of compounds 5

Peak	Processed	Retention	Peak area	Peak height	Peak area
	channel	time (min)	(mAU*s)	(mAU)	(%)
1	280.0 nm	7.524	1776799	109040	5.40
2	280.0 nm	8.213	31122867	1490003	94.60

5b HPLC analysis using chiral ID-H Column (*n*-hexane: DCM = 50:50, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area
	channel	time (min)	(mAU*s)	(mAU)	(%)
1	280.0 nm	8.593	2247248	152100	3.54
2	280.0 nm	9.216	61245800	2652840	96.46

5c HPLC analysis using chiral IA-H Column (*n*-hexane: DCM = 50:50, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area
	channel	time (min)	(mAU*s)	(mAU)	(%)
1	280.0 nm	9.157	45318776	2092629	50.24
2	280.0 nm	10.574	44883108	1911529	49.76

Peak	Processed	Retention	Peak area	Peak height	Peak area
	channel	time (min)	(mAU*s)	(mAU)	(%)
1	280.0 nm	9.240	4937644	256246	4.65
2	280.0 nm	10.253	101157285	3138656	95.35

5d HPLC analysis using chiral IA-H Column (*n*-hexane: DCM = 50:50, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area
	channel	time (min)	(mAU*s)	(mAU)	(%)
1	280.0 nm	7.921	3883906	232884	6.91
2	280.0 nm	8.622	52296843	2450006	93.09

5.987 10.380 0.80-0.60 AU 0.40 0.20-0.00-4.00 6.00 8.00 2.00 10.00 12.00 14.00 0.00 Processed Retention Peak area Peak height Peak Peak area time (min) (mAU*s) (mAU) channel (%)

8.987

10.380

280.0 nm

280.0 nm

1

2

19916511

19861576

916837

847363

50.07

1 1							
0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00

Peak	Processed	Retention	Peak area	Peak height	Peak area
	channel	time (min)	(mAU*s)	(mAU)	(%)
1	280.0 nm	9.153	4293328	217386	6.47
2	280.0 nm	10.181	62074883	2398289	93.53

5f HPLC analysis using chiral IA-H Column (*n*-hexane: DCM = 50:50, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area
	channel	time (min)	(mAU*s)	(mAU)	(%)
1	280.0 nm	13.462	4072243	172965	50.04
2	280.0 nm	14.942	4066487	145018	49.96

Peak	Processed	Retention	Peak area	Peak height	Peak area
	channel	time (min)	(mAU*s)	(mAU)	(%)
1	280.0 nm	12.640	52591885	1712711	96.59
2	280.0 nm	14.589	1857775	77003	3.41

5g HPLC analysis using chiral AD-H Column (*n*-hexane: EtOH = 30:70, 1.0 mL/min)

Peak	Processed	Retention	Peak area	Peak height	Peak area
	channel	time (min)	(mAU*s)	(mAU)	(%)
1	254.4 nm	9.563	3.31569e4	1109.92297	49.67
2	254.4 nm	68.893	3.35970e4	105.25744	50.32

Peak	Processed	Retention	Peak area	Peak height	Peak area
	channel	time (min)	(mAU*s)	(mAU)	(%)
1	254.4 nm	9.502	7.11790e4	1762.96118	92.00
2	254.4 nm	69.006	6181.79883	22.16992	7.99